|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
|
Fine-tune Qwen3-8B on Vyvo Life CoPilot conversations dataset. |
|
|
""" |
|
|
|
|
|
import json |
|
|
from datasets import Dataset |
|
|
from peft import LoraConfig |
|
|
from trl import SFTTrainer, SFTConfig |
|
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
print("π¦ Downloading dataset from Hub...") |
|
|
data_path = hf_hub_download( |
|
|
repo_id="Codyfederer/vyvo-text-conversations", |
|
|
filename="text_conversations.jsonl", |
|
|
repo_type="dataset" |
|
|
) |
|
|
|
|
|
|
|
|
print("π Loading and converting to messages format...") |
|
|
conversations = [] |
|
|
with open(data_path, 'r', encoding='utf-8') as f: |
|
|
for line in f: |
|
|
item = json.loads(line) |
|
|
messages = [] |
|
|
for turn in item['turns']: |
|
|
messages.append({ |
|
|
'role': turn['role'], |
|
|
'content': turn['content'] |
|
|
}) |
|
|
conversations.append({'messages': messages}) |
|
|
|
|
|
dataset = Dataset.from_list(conversations) |
|
|
print(f"β
Converted {len(dataset)} conversations") |
|
|
|
|
|
|
|
|
print("π Creating train/eval split...") |
|
|
dataset_split = dataset.train_test_split(test_size=0.05, seed=42) |
|
|
train_dataset = dataset_split["train"] |
|
|
eval_dataset = dataset_split["test"] |
|
|
print(f" Train: {len(train_dataset)} examples") |
|
|
print(f" Eval: {len(eval_dataset)} examples") |
|
|
|
|
|
|
|
|
config = SFTConfig( |
|
|
|
|
|
output_dir="qwen3-8b-vyvo-copilot", |
|
|
push_to_hub=True, |
|
|
hub_model_id="Codyfederer/qwen3-8b-vyvo-copilot", |
|
|
hub_strategy="every_save", |
|
|
hub_private_repo=False, |
|
|
|
|
|
|
|
|
num_train_epochs=3, |
|
|
per_device_train_batch_size=1, |
|
|
gradient_accumulation_steps=16, |
|
|
learning_rate=2e-4, |
|
|
max_length=1024, |
|
|
|
|
|
|
|
|
gradient_checkpointing=True, |
|
|
gradient_checkpointing_kwargs={"use_reentrant": False}, |
|
|
bf16=True, |
|
|
optim="adamw_8bit", |
|
|
|
|
|
|
|
|
logging_steps=10, |
|
|
save_strategy="steps", |
|
|
save_steps=200, |
|
|
save_total_limit=2, |
|
|
|
|
|
|
|
|
eval_strategy="no", |
|
|
|
|
|
|
|
|
warmup_ratio=0.05, |
|
|
lr_scheduler_type="cosine", |
|
|
weight_decay=0.01, |
|
|
|
|
|
|
|
|
report_to="trackio", |
|
|
project="vyvo-copilot-training", |
|
|
run_name="qwen3-8b-sft-v1", |
|
|
) |
|
|
|
|
|
|
|
|
peft_config = LoraConfig( |
|
|
r=32, |
|
|
lora_alpha=64, |
|
|
lora_dropout=0.05, |
|
|
bias="none", |
|
|
task_type="CAUSAL_LM", |
|
|
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], |
|
|
) |
|
|
|
|
|
|
|
|
print("π― Initializing trainer with Qwen/Qwen3-8B...") |
|
|
trainer = SFTTrainer( |
|
|
model="Qwen/Qwen3-8B", |
|
|
train_dataset=train_dataset, |
|
|
args=config, |
|
|
peft_config=peft_config, |
|
|
) |
|
|
|
|
|
print("π Starting training...") |
|
|
trainer.train() |
|
|
|
|
|
print("πΎ Pushing final model to Hub...") |
|
|
trainer.push_to_hub() |
|
|
|
|
|
print("β
Training complete!") |
|
|
print("π¦ Model saved to: https://huggingface.co/Codyfederer/qwen3-8b-vyvo-copilot") |
|
|
print("π View metrics at: https://huggingface.co/spaces/Codyfederer/trackio") |
|
|
|