--- library_name: transformers base_model: princeton-nlp/Llama-3-Base-8B-SFT tags: - alignment-handbook - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: llama-3-8b-dpo-ultrafeedback-decrease_linear-1.0to0.95 results: [] --- # llama-3-8b-dpo-ultrafeedback-decrease_linear-1.0to0.95 This is a model released from the preprint: [DPO-Shift: Shifting the Distribution of Direct Preference Optimization](https://arxiv.org/abs/2502.07599). Please refer to our [repository](https://github.com/Meaquadddd/DPO-Shift) for more details. This model is a fine-tuned version of [princeton-nlp/Llama-3-Base-8B-SFT](https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.5619 - Rewards/chosen: -0.3784 - Rewards/rejected: -0.8957 - Dpo Lambda: 0.9528 - Rewards/accuracies: 0.7310 - Rewards/margins: 0.5173 - Logps/rejected: -360.6006 - Logps/chosen: -338.4835 - Logits/rejected: -1.0030 - Logits/chosen: -0.9672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Dpo Lambda | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:----------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6826 | 0.1047 | 50 | 0.6803 | 0.0669 | 0.0399 | 0.9948 | 0.6690 | 0.0270 | -267.0431 | -293.9557 | -0.9094 | -0.8412 | | 0.5951 | 0.2094 | 100 | 0.6223 | -0.0861 | -0.2745 | 0.9895 | 0.7130 | 0.1884 | -298.4850 | -309.2591 | -0.9195 | -0.8667 | | 0.6296 | 0.3141 | 150 | 0.5972 | -0.2312 | -0.5289 | 0.9843 | 0.7100 | 0.2977 | -323.9177 | -323.7625 | -0.9008 | -0.8554 | | 0.6219 | 0.4187 | 200 | 0.5784 | -0.4096 | -0.8051 | 0.9790 | 0.7310 | 0.3955 | -351.5381 | -341.6022 | -0.9313 | -0.8927 | | 0.5738 | 0.5234 | 250 | 0.5685 | -0.4338 | -0.8864 | 0.9738 | 0.7260 | 0.4526 | -359.6707 | -344.0276 | -0.9691 | -0.9333 | | 0.5598 | 0.6281 | 300 | 0.5695 | -0.4246 | -0.9086 | 0.9686 | 0.7220 | 0.4840 | -361.8922 | -343.1057 | -1.0002 | -0.9608 | | 0.566 | 0.7328 | 350 | 0.5613 | -0.3470 | -0.8404 | 0.9633 | 0.7260 | 0.4934 | -355.0737 | -335.3493 | -0.9958 | -0.9592 | | 0.5423 | 0.8375 | 400 | 0.5613 | -0.3837 | -0.8996 | 0.9581 | 0.7290 | 0.5159 | -360.9908 | -339.0213 | -1.0033 | -0.9665 | | 0.5357 | 0.9422 | 450 | 0.5619 | -0.3784 | -0.8957 | 0.9528 | 0.7310 | 0.5173 | -360.6006 | -338.4835 | -1.0030 | -0.9672 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1