Auraithm commited on
Commit
8753171
·
verified ·
1 Parent(s): 8b5e6db

Upload fused_linear_diffusion_cross_entropy.py with huggingface_hub

Browse files
fused_linear_diffusion_cross_entropy.py ADDED
@@ -0,0 +1,682 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ # Code adapted from
4
+ # https://github.com/fla-org/flash-linear-attention/blob/main/fla/modules/fused_linear_cross_entropy.py
5
+ # Implementation of element-wise division of cross entropy loss
6
+
7
+
8
+ # Code adapted from
9
+ # https://github.com/linkedin/Liger-Kernel/blob/main/src/liger_kernel/ops/fused_linear_cross_entropy.py
10
+
11
+ from functools import partial
12
+ from typing import Optional, Tuple
13
+
14
+ import torch
15
+ import torch.nn as nn
16
+ import torch.nn.functional as F
17
+ import triton
18
+ import triton.language as tl
19
+ from torch.distributed import DeviceMesh
20
+ from torch.distributed.tensor import DTensor, Replicate, Shard, distribute_module
21
+ from torch.distributed.tensor.parallel import ParallelStyle
22
+
23
+ # The hard limit of TRITON_MAX_TENSOR_NUMEL is 1048576
24
+ # https://github.com/triton-lang/triton/blob/ba42a5c68fd0505f8c42f4202d53be0f8d9a5fe0/python/triton/language/core.py#L19
25
+ # However, setting limit as 65536 as in LayerNorm tutorial is faster because of less register spilling
26
+ # The optimal maximum block size depends on your hardware, your kernel, and your dtype
27
+ MAX_FUSED_SIZE = 65536 // 2
28
+
29
+
30
+ @triton.heuristics({
31
+ 'HAS_SCALE': lambda args: args['scale'] is not None
32
+ })
33
+ @triton.autotune(
34
+ configs=[
35
+ triton.Config({}, num_warps=num_warps)
36
+ for num_warps in [1, 2, 4, 8, 16, 32]
37
+ ],
38
+ key=['D']
39
+ )
40
+ @triton.jit
41
+ def logsumexp_fwd_kernel(
42
+ x,
43
+ z,
44
+ scale,
45
+ D: tl.constexpr,
46
+ B: tl.constexpr,
47
+ HAS_SCALE: tl.constexpr
48
+ ):
49
+ i_n, i_d = tl.program_id(0).to(tl.int64), tl.program_id(1).to(tl.int64)
50
+ o_d = i_d * B + tl.arange(0, B)
51
+ m_d = o_d < D
52
+
53
+ b_x = tl.load(x + i_n * D + o_d, mask=m_d, other=-float('inf'))
54
+ if HAS_SCALE:
55
+ b_x = b_x * scale
56
+ b_m = tl.max(b_x, 0)
57
+ b_z = tl.log(tl.sum(tl.exp(b_x - b_m), 0)) + b_m
58
+ tl.store(z + i_n * tl.cdiv(D, B) + i_d, b_z)
59
+
60
+
61
+ def logsumexp_fwd(
62
+ x,
63
+ scale: Optional[float] = None,
64
+ dtype: Optional[torch.dtype] = None
65
+ ):
66
+ r"""
67
+ Compute the logsumexp of the input tensor over the last dimension.
68
+
69
+ Args:
70
+ x (Tensor):
71
+ The input tensor of any shape.
72
+ scale (Optional[float]):
73
+ The scale applied to the input tensor. Default: `None`.
74
+ dtype (Optional[torch.dtype]):
75
+ The data type of the output tensor. Default: `None`.
76
+ Returns:
77
+ Tensor: The logsumexp of the input tensor.
78
+ """
79
+
80
+ shape = x.shape
81
+ x = x.view(-1, shape[-1])
82
+ N, D = x.shape
83
+ B = min(triton.next_power_of_2(D), 64 * 1024)
84
+ ND = triton.cdiv(D, B)
85
+
86
+ z = x.new_empty(N, ND, dtype=torch.float)
87
+ logsumexp_fwd_kernel[(N, ND)](
88
+ x=x,
89
+ z=z,
90
+ scale=scale,
91
+ D=D,
92
+ B=B
93
+ )
94
+ z = z.logsumexp(-1).view(*shape[:-1])
95
+ if dtype is not None and dtype != torch.float:
96
+ z = z.to(dtype)
97
+ return z
98
+
99
+ @triton.jit
100
+ def cross_entropy_kernel(
101
+ logits,
102
+ lse,
103
+ target,
104
+ p_mask,
105
+ loss,
106
+ total,
107
+ ignore_index,
108
+ label_smoothing: tl.constexpr,
109
+ logit_scale: tl.constexpr,
110
+ reduction: tl.constexpr,
111
+ V: tl.constexpr,
112
+ BV: tl.constexpr
113
+ ):
114
+ """
115
+ This kernel computes both cross entropy loss and the gradient of the input.
116
+ We only consider hard label + mean reduction for now.
117
+ Please refer to https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html for the math.
118
+
119
+ Args:
120
+ logits:
121
+ Pointer to logits tensor.
122
+ lse:
123
+ Pointer to logsumexp tensor.
124
+ target: Pointer to target tensor.
125
+ loss:
126
+ Pointer to tensor to store the loss.
127
+ V (int):
128
+ The number of columns in the input tensor.
129
+ total (int):
130
+ The number of non-ignored classes.
131
+ ignore_index (int):
132
+ The index to ignore in the target.
133
+ label_smoothing (float):
134
+ The amount of smoothing when computing the loss, where 0.0 means no smoothing.
135
+ reduction (str):
136
+ The string for the reduction to apply
137
+ BV (int):
138
+ The block size for vocab.
139
+ """
140
+
141
+ # https://github.com/triton-lang/triton/issues/1058
142
+ # If B*T*V is too large, i_n * stride will overflow out of int32, so we convert to int64
143
+ i_n = tl.program_id(0).to(tl.int64)
144
+ NV = tl.cdiv(V, BV)
145
+
146
+ # 1. Load target first because if the target is ignore_index, we can return right away
147
+ b_y = tl.load(target + i_n)
148
+ # load p_mask
149
+ b_p_mask = tl.load(p_mask + i_n)
150
+
151
+ # 2. locate the start index
152
+ logits += i_n * V
153
+
154
+ if b_y == ignore_index:
155
+ # set all x as 0
156
+ for i in range(0, V, BV):
157
+ o_v = i + tl.arange(0, BV)
158
+ tl.store(logits + o_v, 0.0, mask=o_v < V)
159
+ return
160
+
161
+ # Online softmax: 2 loads + 1 store (compared with 3 loads + 1 store for the safe softmax)
162
+ # Refer to Algorithm 3 in the paper: https://arxiv.org/pdf/1805.02867
163
+
164
+ # 3. [Online softmax] first pass: compute logsumexp
165
+ # we did this in anouter kernel
166
+ b_l = tl.load(logits + b_y) * logit_scale
167
+ b_lse = tl.load(lse + i_n)
168
+
169
+ # 4. Calculate the loss
170
+ # loss = lse - logits_l
171
+ # celoss = -log(q_y) = -log(softmax(x_y))
172
+ b_loss = (b_lse - b_l) / b_p_mask # Diffusion Scaled '1/t'
173
+
174
+ # Label smoothing is a general case of normal cross entropy
175
+ # See the full derivation at https://github.com/linkedin/Liger-Kernel/pull/198#issue-2503665310
176
+ b_z = 0.0
177
+ eps = label_smoothing / V
178
+
179
+ # We need tl.debug_barrier() as mentioned in
180
+ # https://github.com/triton-lang/triton/blob/ba42a5c68fd0505f8c42f4202d53be0f8d9a5fe0/python/triton/ops/cross_entropy.py#L34
181
+ tl.debug_barrier()
182
+
183
+ # 5. [Online Softmax] Second pass: compute gradients
184
+ # For 'mean' reduction, gradients are normalized by number of non-ignored elements
185
+ # dx_y = (softmax(x_y) - 1) / N
186
+ # dx_i = softmax(x_i) / N, i != y
187
+ # For label smoothing:
188
+ # dx_i = (softmax(x_y) - label_smoothing / V) / N, i != y
189
+ # dx_y = (softmax(x_y) - label_smoothing / V - (1 - label_smoothing)) / N
190
+ # = dx_i - (1 - label_smoothing) / N
191
+ for iv in range(0, NV):
192
+ o_v = iv * BV + tl.arange(0, BV)
193
+ b_logits = tl.load(logits + o_v, mask=o_v < V, other=float('-inf')) * logit_scale
194
+ if label_smoothing > 0:
195
+ # scale X beforehand to avoid overflow
196
+ b_z += tl.sum(tl.where(o_v < V, -eps * b_logits, 0.0))
197
+ b_p = (tl.exp(b_logits - b_lse) - eps) * logit_scale
198
+ b_p /= b_p_mask # 修改
199
+ if reduction == "mean":
200
+ b_p = b_p / total
201
+ tl.store(logits + o_v, b_p, mask=o_v < V)
202
+
203
+ tl.debug_barrier()
204
+
205
+ # Orginal loss = H(q, p), with label smoothing regularization = H(q', p) and (label_smoothing / V) = eps
206
+ # H(q', p) = (1 - label_smoothing) * H(q, p) + label_smoothing * H(u, p)
207
+ # = (1 - label_smoothing) * H(q, p) + eps * sum(logsoftmax(x_i))
208
+ # By using m (global max of xi) and d (sum of e^(xi-m)), we can simplify as:
209
+ # = (1 - label_smoothing) * H(q, p) + (-sum(x_i * eps) + label_smoothing * (m + logd))
210
+ # Refer to H(q', p) in section 7 of the paper:
211
+ # https://arxiv.org/pdf/1512.00567
212
+ # pytorch:
213
+ # https://github.com/pytorch/pytorch/blob/2981534f54d49fa3a9755c9b0855e7929c2527f0/aten/src/ATen/native/LossNLL.cpp#L516
214
+ # See full derivation at https://github.com/linkedin/Liger-Kernel/pull/198#issuecomment-2333753087
215
+ if label_smoothing > 0:
216
+ b_loss = b_loss * (1 - label_smoothing) + (b_z + label_smoothing * b_lse)
217
+
218
+ # 6. Specially handle the i==y case where `dx_y = (softmax(x_y) - (1 - label_smoothing) / N`
219
+ b_l = tl.load(logits + b_y)
220
+
221
+ # Normalize the loss by the number of non-ignored elements if reduction is "mean"
222
+ if reduction == 'mean':
223
+ b_loss = b_loss / total
224
+ # b_l += (label_smoothing - 1) / total * logit_scale
225
+ # b_l has already been divided by b_p_mask and total
226
+ b_l += (label_smoothing - 1) / b_p_mask / total * logit_scale
227
+ else:
228
+ # b_l += (label_smoothing - 1) * logit_scale
229
+ b_l += (label_smoothing - 1) / b_p_mask * logit_scale
230
+
231
+ tl.store(loss + i_n, b_loss)
232
+ tl.store(logits + b_y, b_l)
233
+
234
+
235
+ @triton.jit
236
+ def elementwise_mul_kernel(
237
+ x,
238
+ g,
239
+ N: tl.constexpr,
240
+ B: tl.constexpr
241
+ ):
242
+ """
243
+ This function multiplies each element of the tensor pointed by x with the value pointed by g.
244
+ The multiplication is performed in-place on the tensor pointed by x.
245
+
246
+ Parameters:
247
+ x:
248
+ Pointer to the input tensor.
249
+ g:
250
+ Pointer to the gradient output value.
251
+ N (int):
252
+ The number of columns in the input tensor.
253
+ B (int):
254
+ The block size for Triton operations.
255
+ """
256
+
257
+ # Get the program ID and convert it to int64 to avoid overflow
258
+ i_x = tl.program_id(0).to(tl.int64)
259
+ o_x = i_x * B + tl.arange(0, B)
260
+
261
+ # Load the gradient output value
262
+ b_g = tl.load(g)
263
+ b_x = tl.load(x + o_x, mask=o_x < N)
264
+ tl.store(x + o_x, b_x * b_g, mask=o_x < N)
265
+
266
+
267
+ def fused_linear_cross_entropy_forward(
268
+ x: torch.Tensor,
269
+ target: torch.LongTensor,
270
+ weight: torch.Tensor,
271
+ bias: torch.Tensor = None,
272
+ p_mask: torch.Tensor = None,
273
+ ignore_index: int = -100,
274
+ label_smoothing: float = 0.0,
275
+ logit_scale: float = 1.0,
276
+ num_chunks: int = 8,
277
+ reduction: str = "mean"
278
+ ):
279
+ device = x.device
280
+ # inputs have shape: [N, H]
281
+ # materialized activations will have shape: [N, V]
282
+ # the increase in memory = [N, V]
283
+ # reduction can be achieved by partitioning the number of tokens N into smaller chunks.
284
+
285
+ # ideally, we would like to achieve the same memory consumption as [N, H],
286
+ # so the expected chunk size should be:
287
+ # NC = ceil(V / H)
288
+ # C = ceil(N / NC)
289
+ # for ex: N = 4096*4, V = 32000, H = 4096 ==> NC = 8, C = ceil(N / NC) = 2048
290
+ N, H, V = *x.shape, weight.shape[0]
291
+ BV = min(MAX_FUSED_SIZE, triton.next_power_of_2(V))
292
+ # TODO: in real cases, we may need to limit the number of chunks NC to
293
+ # ensure the precisions of accumulated gradients
294
+ NC = min(num_chunks, triton.cdiv(V, H))
295
+ C = triton.next_power_of_2(triton.cdiv(N, NC))
296
+ NC = triton.cdiv(N, C)
297
+
298
+ # [N, H]
299
+ dx = torch.zeros_like(x, device=device)
300
+ # [V, H]
301
+ dw = torch.zeros_like(weight, device=device, dtype=torch.float) if weight is not None else None
302
+ # [V]
303
+ db = torch.zeros_like(bias, device=device, dtype=torch.float) if bias is not None else None
304
+ # [N]
305
+ loss = torch.zeros(N, device=device, dtype=torch.float)
306
+
307
+ total = target.ne(ignore_index).sum().item()
308
+
309
+ for ic in range(NC):
310
+ start, end = ic * C, min((ic + 1) * C, N)
311
+ # [C, N]
312
+ c_x = x[start:end]
313
+ # when doing matmul, use the original precision
314
+ # [C, V]
315
+ c_logits = F.linear(c_x, weight, bias)
316
+ c_target = target[start:end]
317
+ c_p_mask = p_mask[start:end]
318
+ # [C]
319
+ # keep lse in fp32 to maintain precision
320
+ c_lse = logsumexp_fwd(c_logits, scale=logit_scale, dtype=torch.float)
321
+
322
+ # unreduced loss
323
+ c_loss = loss[start:end]
324
+
325
+ # Here we calculate the gradient of c_logits in place so we can save memory.
326
+ cross_entropy_kernel[(c_logits.shape[0],)](
327
+ logits=c_logits,
328
+ lse=c_lse,
329
+ target=c_target,
330
+ p_mask=c_p_mask,
331
+ loss=c_loss,
332
+ total=total,
333
+ ignore_index=ignore_index,
334
+ label_smoothing=label_smoothing,
335
+ logit_scale=logit_scale,
336
+ reduction=reduction,
337
+ V=V,
338
+ BV=BV,
339
+ num_warps=32
340
+ )
341
+
342
+ # gradient of logits is computed in-place by the above triton kernel and is of shape: C x V
343
+ # thus dx should be of shape: C x H
344
+ dx[start:end] = torch.mm(c_logits, weight)
345
+
346
+ # keep dw in fp32 to maintain precision
347
+ if weight is not None:
348
+ dw += c_logits.t() @ c_x
349
+
350
+ if bias is not None:
351
+ torch.add(input=db, other=c_logits.sum(0), out=db)
352
+
353
+ loss = loss.sum()
354
+ if dw is not None:
355
+ dw = dw.to(weight)
356
+ if db is not None:
357
+ db = db.to(bias)
358
+ return loss, dx, dw, db
359
+
360
+
361
+ def fused_linear_cross_entropy_backward(
362
+ do: torch.Tensor,
363
+ dx: torch.Tensor,
364
+ dw: torch.Tensor,
365
+ db: torch.Tensor
366
+ ):
367
+ # If cross entropy is the last layer, do is 1.0. Skip the mul to save time
368
+ if torch.ne(do, torch.tensor(1.0, device=do.device)):
369
+ # We use a Triton kernel instead of a PyTorch operation because modifying inputs in-place
370
+ # for gradient storage and backward multiple times causes anomalies with PyTorch but not with Triton.
371
+ N, H = dx.shape
372
+ B = min(MAX_FUSED_SIZE, triton.next_power_of_2(H))
373
+
374
+ elementwise_mul_kernel[(triton.cdiv(N * H, B),)](
375
+ x=dx,
376
+ g=do,
377
+ N=N*H,
378
+ B=B,
379
+ num_warps=32,
380
+ )
381
+
382
+ # handle dw
383
+ if dw is not None:
384
+ V, H = dw.shape
385
+ elementwise_mul_kernel[(triton.cdiv(V * H, B),)](
386
+ x=dw,
387
+ g=do,
388
+ N=V*H,
389
+ B=B,
390
+ num_warps=32,
391
+ )
392
+
393
+ if db is not None:
394
+ V = db.shape[0]
395
+ elementwise_mul_kernel[(triton.cdiv(V, B),)](
396
+ x=db,
397
+ g=do,
398
+ N=V,
399
+ B=B,
400
+ num_warps=32,
401
+ )
402
+ return dx, dw, db
403
+
404
+
405
+ class FusedLinearCrossEntropyFunction(torch.autograd.Function):
406
+
407
+ @staticmethod
408
+ def forward(
409
+ ctx,
410
+ x: torch.Tensor,
411
+ target: torch.LongTensor,
412
+ weight: torch.Tensor,
413
+ bias: torch.Tensor = None,
414
+ p_mask: torch.Tensor = None,
415
+ ignore_index: int = -100,
416
+ label_smoothing: float = 0.0,
417
+ logit_scale: float = 1.0,
418
+ num_chunks: int = 8,
419
+ reduction: str = "mean"
420
+ ):
421
+ """
422
+ Fusing the last linear layer with cross-entropy loss
423
+ Reference: https://github.com/mgmalek/efficient_cross_entropy
424
+
425
+ Handle the forward and backward pass of the final linear layer via cross-entropy loss by avoiding
426
+ the materialization of the large logits tensor. Since Cross Entropy Loss is the last layer, we can
427
+ compute the gradient at the forward pass. By doing so, we don't have to store the x and target
428
+ for the backward pass.
429
+
430
+ x (torch.Tensor): [batch_size * seq_len, hidden_size]
431
+ target (torch.LongTensor): [batch_size * seq_len]
432
+ where each value is in [0, vocab_size).
433
+ weight (torch.Tensor): [vocab_size, hidden_size]
434
+ where `vocab_size` is the number of classes.
435
+ bias (Optional[torch.Tensor]): [vocab_size]
436
+ where `vocab_size` is the number of classes.
437
+ p_mask(torch.Tensor): [batch_size * seq_len]
438
+ Its shape should be same as target.
439
+ ignore_index:
440
+ the index to ignore in the target.
441
+ label_smoothing:
442
+ the amount of smoothing when computing the loss, where 0.0 means no smoothing.
443
+ logit_scale: float = 1.0,
444
+ A scaling factor applied to the logits. Default: 1.0
445
+ num_chunks: int
446
+ The number of chunks to split the input tensor into for processing.
447
+ This can help optimize memory usage and computation speed.
448
+ Default: 8
449
+ reduction:
450
+ Specifies the reduction to apply to the output: 'mean' | 'sum'.
451
+ 'mean': the weighted mean of the output is taken,
452
+ 'sum': the output will be summed.
453
+ Default: 'mean'.
454
+ """
455
+ loss, dx, dw, db = fused_linear_cross_entropy_forward(
456
+ x,
457
+ target,
458
+ weight,
459
+ bias,
460
+ p_mask,
461
+ ignore_index,
462
+ label_smoothing,
463
+ logit_scale,
464
+ num_chunks,
465
+ reduction
466
+ )
467
+ # downcast to dtype and store for backward
468
+ ctx.save_for_backward(
469
+ dx.detach(),
470
+ dw.detach() if weight is not None else None,
471
+ db.detach() if bias is not None else None,
472
+ )
473
+ return loss
474
+
475
+ @staticmethod
476
+ def backward(ctx, do):
477
+ dx, dw, db = ctx.saved_tensors
478
+ dx, dw, db = fused_linear_cross_entropy_backward(do, dx, dw, db)
479
+ # 10 gradients should be returned, with `p_mask` having no grads
480
+ # Check the number of arguments in the `forward` method
481
+ return dx, None, dw, db, None, None, None, None, None, None
482
+
483
+
484
+ def fused_linear_cross_entropy_loss(
485
+ x: torch.Tensor,
486
+ target: torch.LongTensor,
487
+ weight: torch.Tensor,
488
+ bias: torch.Tensor = None,
489
+ p_mask: torch.Tensor = None,
490
+ ignore_index: int = -100,
491
+ label_smoothing: float = 0.0,
492
+ logit_scale: float = 1.0,
493
+ num_chunks: int = 8,
494
+ reduction: str = "mean"
495
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
496
+ """
497
+ Args:
498
+ x (torch.Tensor): [batch_size * seq_len, hidden_size]
499
+ target (torch.LongTensor): [batch_size * seq_len]
500
+ where each value is in [0, vocab_size).
501
+ weight (torch.Tensor): [vocab_size, hidden_size]
502
+ where `vocab_size` is the number of classes.
503
+ bias (Optional[torch.Tensor]): [vocab_size]
504
+ where `vocab_size` is the number of classes.
505
+ p_mask(torch.Tensor): [batch_size * seq_len]
506
+ Its shape should be same as target.
507
+ ignore_index: int.
508
+ If target == ignore_index, the loss is set to 0.0.
509
+ label_smoothing: float
510
+ logit_scale: float
511
+ A scaling factor applied to the logits. Default: 1.0
512
+ num_chunks: int
513
+ The number of chunks to split the input tensor into for processing.
514
+ This can help optimize memory usage and computation speed.
515
+ Default: 8
516
+ reduction:
517
+ Specifies the reduction to apply to the output: 'mean' | 'sum'.
518
+ 'mean': the weighted mean of the output is taken,
519
+ 'sum': the output will be summed.
520
+ Default: 'mean'.
521
+ Returns:
522
+ losses: [batch,], float
523
+ """
524
+ return FusedLinearCrossEntropyFunction.apply(
525
+ x,
526
+ target,
527
+ weight,
528
+ bias,
529
+ p_mask,
530
+ ignore_index,
531
+ label_smoothing,
532
+ logit_scale,
533
+ num_chunks,
534
+ reduction
535
+ )
536
+
537
+
538
+ class FusedLinearDiffusionCrossEntropyLoss(nn.Module):
539
+
540
+ def __init__(
541
+ self,
542
+ ignore_index: int = -100,
543
+ label_smoothing: float = 0.0,
544
+ logit_scale: float = 1.0,
545
+ num_chunks: int = 8,
546
+ reduction: str = "mean"
547
+ ):
548
+ """
549
+ Args:
550
+ ignore_index: int.
551
+ If target == ignore_index, the loss is set to 0.0.
552
+ label_smoothing: float
553
+ logit_scale: float
554
+ A scaling factor applied to the logits. Default: 1.0
555
+ num_chunks: int
556
+ The number of chunks to split the input tensor into for processing.
557
+ This can help optimize memory usage and computation speed.
558
+ Default: 8
559
+ reduction:
560
+ Specifies the reduction to apply to the output: 'mean' | 'sum'.
561
+ 'mean': the weighted mean of the output is taken,
562
+ 'sum': the output will be summed.
563
+ Default: 'mean'.
564
+ """
565
+ super().__init__()
566
+
567
+ assert reduction in ["mean", "sum"], f"reduction: {reduction} is not supported"
568
+
569
+ self.ignore_index = ignore_index
570
+ self.label_smoothing = label_smoothing
571
+ self.logit_scale = logit_scale
572
+ self.num_chunks = num_chunks
573
+ self.reduction = reduction
574
+
575
+ @torch.compiler.disable
576
+ def forward(
577
+ self,
578
+ x: torch.Tensor,
579
+ target: torch.LongTensor,
580
+ weight: torch.Tensor,
581
+ bias: Optional[torch.Tensor] = None,
582
+ p_mask: torch.Tensor = None
583
+ ):
584
+ """
585
+ Args:
586
+ x (torch.Tensor): [batch_size, seq_len, hidden_size]
587
+ target (torch.LongTensor): [batch_size, seq_len]
588
+ where each value is in [0, V).
589
+ weight (torch.Tensor): [vocab_size, hidden_size]
590
+ where `vocab_size` is the number of classes.
591
+ bias (Optional[torch.Tensor]): [vocab_size]
592
+ where `vocab_size` is the number of classes.
593
+ p_mask(torch.Tensor): [batch_size, seq_len]
594
+ Its shape is same as target.
595
+ Shape: (1, packed_length) when varlen attn is used.
596
+ Returns:
597
+ loss
598
+
599
+ TODO:
600
+ follow https://github.com/ML-GSAI/LLaDA/blob/main/GUIDELINES.md#pre-training
601
+ ```py
602
+ unreduced_loss /= p_mask
603
+ ```
604
+ Scale the values of `unreduced_loss at different positions
605
+ """
606
+ if p_mask is None:
607
+ p_mask = torch.ones_like(target, dtype=torch.float, device=x.device)
608
+
609
+ x = x.contiguous().view(-1, x.shape[-1])
610
+ target = target.contiguous().view(-1)
611
+ weight = weight.contiguous()
612
+ bias = bias.contiguous() if bias else None
613
+ p_mask = p_mask.contiguous().view(-1)
614
+ l, d = x.shape
615
+ assert l == target.shape[0] == p_mask.shape[0], f"{x.shape=}, {target.shape=}, {p_mask.shape=}"
616
+
617
+ loss = fused_linear_cross_entropy_loss(
618
+ x,
619
+ target,
620
+ weight=weight,
621
+ bias=bias,
622
+ p_mask=p_mask,
623
+ ignore_index=self.ignore_index,
624
+ label_smoothing=self.label_smoothing,
625
+ logit_scale=self.logit_scale,
626
+ num_chunks=self.num_chunks,
627
+ reduction=self.reduction
628
+ )
629
+ return loss
630
+
631
+
632
+ class LinearLossParallel(ParallelStyle):
633
+ def __init__(
634
+ self,
635
+ *,
636
+ sequence_dim: int = 1,
637
+ use_local_output: bool = False,
638
+ ):
639
+ super().__init__()
640
+
641
+ self.sequence_sharding = (Shard(sequence_dim),)
642
+ self.use_local_output = use_local_output
643
+
644
+ @staticmethod
645
+ def _prepare_input_fn(sequence_sharding, mod, inputs, device_mesh):
646
+ x, target, weight, bias = inputs
647
+
648
+ if not isinstance(x, DTensor):
649
+ # assume the input passed in already sharded on the sequence dim and create the DTensor
650
+ x = DTensor.from_local(x, device_mesh, sequence_sharding)
651
+ if x.placements != sequence_sharding:
652
+ x = x.redistribute(placements=sequence_sharding, async_op=True)
653
+ if not isinstance(target, DTensor):
654
+ target = DTensor.from_local(target, device_mesh, [Replicate()])
655
+ if target.placements != sequence_sharding:
656
+ target = target.redistribute(placements=sequence_sharding, async_op=True)
657
+
658
+ if not isinstance(weight, DTensor):
659
+ weight = DTensor.from_local(weight, device_mesh, [Replicate()])
660
+ if weight.placements != [Replicate()]:
661
+ # we replicate the weight/bias in FLCE
662
+ weight = weight.redistribute(placements=[Replicate()], async_op=True)
663
+
664
+ if bias is not None and not isinstance(bias, DTensor):
665
+ bias = DTensor.from_local(bias, device_mesh, [Replicate()])
666
+ if bias is not None and bias.placements != [Replicate()]:
667
+ bias = bias.redistribute(placements=[Replicate()], async_op=True)
668
+
669
+ return x.to_local(), target.to_local(), weight.to_local(), bias.to_local() if bias is not None else bias
670
+
671
+ @staticmethod
672
+ def _prepare_output_fn(use_local_output, mod, outputs, device_mesh):
673
+ return outputs.to_local() if use_local_output else outputs
674
+
675
+ def _apply(self, module: nn.Module, device_mesh: DeviceMesh) -> nn.Module:
676
+ return distribute_module(
677
+ module,
678
+ device_mesh,
679
+ partition_fn=None,
680
+ input_fn=partial(self._prepare_input_fn, self.sequence_sharding),
681
+ output_fn=partial(self._prepare_output_fn, self.use_local_output)
682
+ )