|
|
"""
|
|
|
Utility functions for surgical instrument classification
|
|
|
"""
|
|
|
|
|
|
import cv2
|
|
|
import numpy as np
|
|
|
from skimage.feature.texture import graycomatrix, graycoprops
|
|
|
from skimage.feature import local_binary_pattern, hog
|
|
|
from sklearn.decomposition import PCA
|
|
|
from sklearn.svm import SVC
|
|
|
from sklearn.model_selection import train_test_split
|
|
|
from sklearn.metrics import accuracy_score, f1_score
|
|
|
|
|
|
def augment_image(image, rotation_range=(-10, 10), brightness_range=(0.9, 1.1),
|
|
|
add_noise=True, noise_sigma=3, horizontal_flip=False):
|
|
|
"""
|
|
|
Apply safe augmentations for surgical instrument images
|
|
|
|
|
|
Args:
|
|
|
image: Input image (BGR format from cv2)
|
|
|
rotation_range: (min, max) rotation in degrees
|
|
|
brightness_range: (min, max) brightness multiplier
|
|
|
add_noise: Whether to add Gaussian noise
|
|
|
noise_sigma: Standard deviation of Gaussian noise
|
|
|
horizontal_flip: Whether to flip horizontally
|
|
|
|
|
|
Returns:
|
|
|
Augmented image
|
|
|
"""
|
|
|
img = image.copy()
|
|
|
|
|
|
|
|
|
if rotation_range:
|
|
|
angle = np.random.uniform(rotation_range[0], rotation_range[1])
|
|
|
h, w = img.shape[:2]
|
|
|
center = (w // 2, h // 2)
|
|
|
M = cv2.getRotationMatrix2D(center, angle, 1.0)
|
|
|
img = cv2.warpAffine(img, M, (w, h), borderMode=cv2.BORDER_REFLECT)
|
|
|
|
|
|
|
|
|
if brightness_range:
|
|
|
alpha = np.random.uniform(brightness_range[0], brightness_range[1])
|
|
|
img = cv2.convertScaleAbs(img, alpha=alpha, beta=0)
|
|
|
|
|
|
|
|
|
if horizontal_flip:
|
|
|
img = cv2.flip(img, 1)
|
|
|
|
|
|
|
|
|
if add_noise:
|
|
|
noise = np.random.normal(0, noise_sigma, img.shape)
|
|
|
img = np.clip(img.astype(np.float32) + noise, 0, 255).astype(np.uint8)
|
|
|
|
|
|
return img
|
|
|
|
|
|
|
|
|
def preprocess_image(image):
|
|
|
"""
|
|
|
Apply CLAHE preprocessing for better contrast
|
|
|
MUST be defined BEFORE extract_features_from_image
|
|
|
(Contrast Limited Adaptive Historam Equalization)
|
|
|
"""
|
|
|
|
|
|
lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)
|
|
|
l, a, b = cv2.split(lab)
|
|
|
|
|
|
|
|
|
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
|
|
|
l = clahe.apply(l)
|
|
|
|
|
|
|
|
|
enhanced = cv2.merge([l, a, b])
|
|
|
enhanced = cv2.cvtColor(enhanced, cv2.COLOR_LAB2BGR)
|
|
|
|
|
|
return enhanced
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def rgb_histogram(image, bins=256):
|
|
|
"""Extract RGB histogram features"""
|
|
|
hist_features = []
|
|
|
for i in range(3):
|
|
|
hist, _ = np.histogram(image[:, :, i], bins=bins, range=(0, 256), density=True)
|
|
|
hist_features.append(hist)
|
|
|
return np.concatenate(hist_features)
|
|
|
|
|
|
|
|
|
def hu_moments(image):
|
|
|
"""Extract Hu moment features, takes BGR format in input
|
|
|
basically provides shape description that are consistent
|
|
|
wrt to position, size and rotation"""
|
|
|
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
|
|
moments = cv2.moments(gray)
|
|
|
hu_moments = cv2.HuMoments(moments).flatten()
|
|
|
return hu_moments
|
|
|
|
|
|
|
|
|
def glcm_features(image, distances=[1], angles=[0], levels=256, symmetric=True, normed=True):
|
|
|
"""Extract GLCM texture features,
|
|
|
captures texture info considering spatial
|
|
|
relationship between pixel intensities. works well with RGB and hu"""
|
|
|
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
|
|
glcm = graycomatrix(gray, distances=distances, angles=angles, levels=levels,
|
|
|
symmetric=symmetric, normed=normed)
|
|
|
contrast = graycoprops(glcm, 'contrast').flatten()
|
|
|
dissimilarity = graycoprops(glcm, 'dissimilarity').flatten()
|
|
|
homogeneity = graycoprops(glcm, 'homogeneity').flatten()
|
|
|
energy = graycoprops(glcm, 'energy').flatten()
|
|
|
correlation = graycoprops(glcm, 'correlation').flatten()
|
|
|
asm = graycoprops(glcm, 'ASM').flatten()
|
|
|
return np.concatenate([contrast, dissimilarity, homogeneity, energy, correlation, asm])
|
|
|
|
|
|
|
|
|
def local_binary_pattern_features(image, P=8, R=1):
|
|
|
"""Extract Local Binary Pattern features, useful for light changes
|
|
|
combined with rgb, hu and glcm"""
|
|
|
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
|
|
lbp = local_binary_pattern(gray, P, R, method='uniform')
|
|
|
(hist, _) = np.histogram(lbp.ravel(), bins=np.arange(0, P + 3),
|
|
|
range=(0, P + 2), density=True)
|
|
|
return hist
|
|
|
|
|
|
|
|
|
def hog_features(image, orientations=12, pixels_per_cell=(8, 8), cells_per_block=(2, 2)):
|
|
|
"""
|
|
|
Extract HOG (Histogram of Oriented Gradients) features
|
|
|
Great for capturing shape and edge information in surgical instruments
|
|
|
"""
|
|
|
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
|
|
|
|
gray_resized = cv2.resize(gray, (256, 256))
|
|
|
|
|
|
hog_features_vector = hog(
|
|
|
gray_resized,
|
|
|
orientations=orientations,
|
|
|
pixels_per_cell=pixels_per_cell,
|
|
|
cells_per_block=cells_per_block,
|
|
|
block_norm='L2-Hys',
|
|
|
feature_vector=True
|
|
|
)
|
|
|
|
|
|
return hog_features_vector
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def luv_histogram(image, bins=32):
|
|
|
"""
|
|
|
Extract histogram in LUV color space
|
|
|
LUV is perceptually uniform and better for underwater/surgical imaging
|
|
|
"""
|
|
|
luv = cv2.cvtColor(image, cv2.COLOR_BGR2LUV)
|
|
|
hist_features = []
|
|
|
for i in range(3):
|
|
|
hist, _ = np.histogram(luv[:, :, i], bins=bins, range=(0, 256), density=True)
|
|
|
hist_features.append(hist)
|
|
|
return np.concatenate(hist_features)
|
|
|
|
|
|
|
|
|
def gabor_features(image, frequencies=[0.1, 0.2, 0.3],
|
|
|
orientations=[0, 45, 90, 135]):
|
|
|
"""
|
|
|
Extract Gabor filter features (gabor kernels)
|
|
|
texture orientation that deals well with different scales and diff orientation
|
|
|
"""
|
|
|
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
|
|
features = []
|
|
|
|
|
|
for freq in frequencies:
|
|
|
for theta in orientations:
|
|
|
theta_rad = theta * np.pi / 180
|
|
|
kernel = cv2.getGaborKernel((21, 21), 5, theta_rad,
|
|
|
10.0/freq, 0.5, 0)
|
|
|
filtered = cv2.filter2D(gray, cv2.CV_32F, kernel)
|
|
|
features.append(np.mean(filtered))
|
|
|
features.append(np.std(filtered))
|
|
|
|
|
|
return np.array(features)
|
|
|
|
|
|
|
|
|
def extract_features_from_image(image):
|
|
|
"""
|
|
|
Extract enhanced features from image
|
|
|
Uses baseline features + HOG + LUV histogram + Gabor for better performance
|
|
|
|
|
|
Args:
|
|
|
image: Input image (BGR format from cv2.imread)
|
|
|
|
|
|
Returns:
|
|
|
Feature vector as numpy array
|
|
|
"""
|
|
|
|
|
|
image = preprocess_image(image)
|
|
|
|
|
|
|
|
|
hist_features = rgb_histogram(image)
|
|
|
hu_features = hu_moments(image)
|
|
|
glcm_features_vector = glcm_features(image)
|
|
|
lbp_features = local_binary_pattern_features(image)
|
|
|
|
|
|
|
|
|
hog_feat = hog_features(image)
|
|
|
luv_hist = luv_histogram(image)
|
|
|
gabor_feat = gabor_features(image)
|
|
|
|
|
|
|
|
|
image_features = np.concatenate([
|
|
|
hist_features,
|
|
|
hu_features,
|
|
|
glcm_features_vector,
|
|
|
lbp_features,
|
|
|
hog_feat,
|
|
|
luv_hist,
|
|
|
gabor_feat
|
|
|
])
|
|
|
|
|
|
return image_features
|
|
|
|
|
|
|
|
|
def fit_pca_transformer(data, num_components):
|
|
|
"""
|
|
|
Fit a PCA transformer on training data
|
|
|
|
|
|
Args:
|
|
|
data: Training data (n_samples, n_features)
|
|
|
num_components: Number of PCA components to keep
|
|
|
|
|
|
Returns:
|
|
|
pca_params: Dictionary containing PCA parameters
|
|
|
data_reduced: PCA-transformed data
|
|
|
"""
|
|
|
|
|
|
|
|
|
mean = np.mean(data, axis=0)
|
|
|
std = np.std(data, axis=0)
|
|
|
|
|
|
|
|
|
std[std == 0] = 1.0
|
|
|
|
|
|
data_standardized = (data - mean) / std
|
|
|
|
|
|
|
|
|
pca_model = PCA(n_components=num_components)
|
|
|
data_reduced = pca_model.fit_transform(data_standardized)
|
|
|
|
|
|
|
|
|
pca_params = {
|
|
|
'pca_model': pca_model,
|
|
|
'mean': mean,
|
|
|
'std': std,
|
|
|
'num_components': num_components,
|
|
|
'feature_dim': data.shape[1],
|
|
|
'explained_variance_ratio': pca_model.explained_variance_ratio_,
|
|
|
'cumulative_variance': np.cumsum(pca_model.explained_variance_ratio_)
|
|
|
}
|
|
|
|
|
|
return pca_params, data_reduced
|
|
|
|
|
|
|
|
|
def apply_pca_transform(data, pca_params):
|
|
|
"""
|
|
|
Apply saved PCA transformation to new data
|
|
|
CRITICAL: This uses the saved mean/std/PCA from training
|
|
|
|
|
|
Args:
|
|
|
data: New data to transform (n_samples, n_features)
|
|
|
pca_params: Dictionary from fit_pca_transformer
|
|
|
|
|
|
Returns:
|
|
|
Transformed data
|
|
|
"""
|
|
|
|
|
|
|
|
|
data_standardized = (data - pca_params['mean']) / pca_params['std']
|
|
|
|
|
|
|
|
|
|
|
|
data_reduced = pca_params['pca_model'].transform(data_standardized)
|
|
|
|
|
|
return data_reduced
|
|
|
|
|
|
|
|
|
def train_svm_model(features, labels, test_size=0.2, kernel='rbf', C=1.0):
|
|
|
"""
|
|
|
Train an SVM model and return both the model and performance metrics
|
|
|
|
|
|
Args:
|
|
|
features: Feature matrix (n_samples, n_features)
|
|
|
labels: Label array (n_samples,)
|
|
|
test_size: Proportion for test split
|
|
|
kernel: SVM kernel type
|
|
|
C: SVM regularization parameter
|
|
|
|
|
|
Returns:
|
|
|
Dictionary containing model and metrics
|
|
|
"""
|
|
|
|
|
|
|
|
|
if labels.ndim > 1 and labels.shape[1] > 1:
|
|
|
labels = np.argmax(labels, axis=1)
|
|
|
|
|
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(
|
|
|
features, labels, test_size=test_size, random_state=42, stratify=labels
|
|
|
)
|
|
|
|
|
|
|
|
|
svm_model = SVC(kernel=kernel, C=C, random_state=42)
|
|
|
svm_model.fit(X_train, y_train)
|
|
|
|
|
|
|
|
|
y_train_pred = svm_model.predict(X_train)
|
|
|
y_test_pred = svm_model.predict(X_test)
|
|
|
|
|
|
train_accuracy = accuracy_score(y_train, y_train_pred)
|
|
|
test_accuracy = accuracy_score(y_test, y_test_pred)
|
|
|
test_f1 = f1_score(y_test, y_test_pred, average='macro')
|
|
|
|
|
|
print(f'Train Accuracy: {train_accuracy:.4f}')
|
|
|
print(f'Test Accuracy: {test_accuracy:.4f}')
|
|
|
print(f'Test F1-score: {test_f1:.4f}')
|
|
|
|
|
|
results = {
|
|
|
'model': svm_model,
|
|
|
'train_accuracy': train_accuracy,
|
|
|
'test_accuracy': test_accuracy,
|
|
|
'test_f1': test_f1
|
|
|
}
|
|
|
|
|
|
return results |