Create train_script.py
Browse files- train_script.py +171 -0
train_script.py
ADDED
|
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import traceback
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
+
|
| 7 |
+
from sentence_transformers import SentenceTransformer
|
| 8 |
+
from sentence_transformers.cross_encoder import CrossEncoder, CrossEncoderModelCardData
|
| 9 |
+
from sentence_transformers.cross_encoder.evaluation import (
|
| 10 |
+
CrossEncoderNanoBEIREvaluator,
|
| 11 |
+
CrossEncoderRerankingEvaluator,
|
| 12 |
+
)
|
| 13 |
+
from sentence_transformers.cross_encoder.losses.BinaryCrossEntropyLoss import BinaryCrossEntropyLoss
|
| 14 |
+
from sentence_transformers.cross_encoder.trainer import CrossEncoderTrainer
|
| 15 |
+
from sentence_transformers.cross_encoder.training_args import CrossEncoderTrainingArguments
|
| 16 |
+
from sentence_transformers.evaluation.SequentialEvaluator import SequentialEvaluator
|
| 17 |
+
from sentence_transformers.util import mine_hard_negatives
|
| 18 |
+
|
| 19 |
+
# Set the log level to INFO to get more information
|
| 20 |
+
logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def main():
|
| 24 |
+
model_name = "prajjwal1/bert-tiny"
|
| 25 |
+
|
| 26 |
+
train_batch_size = 2048
|
| 27 |
+
num_epochs = 1
|
| 28 |
+
num_hard_negatives = 5 # How many hard negatives should be mined for each question-answer pair
|
| 29 |
+
|
| 30 |
+
# 1a. Load a model to finetune with 1b. (Optional) model card data
|
| 31 |
+
model = CrossEncoder(
|
| 32 |
+
model_name,
|
| 33 |
+
model_card_data=CrossEncoderModelCardData(
|
| 34 |
+
language="en",
|
| 35 |
+
license="apache-2.0",
|
| 36 |
+
model_name="BERT-tiny trained on GooAQ",
|
| 37 |
+
),
|
| 38 |
+
)
|
| 39 |
+
print("Model max length:", model.max_length)
|
| 40 |
+
print("Model num labels:", model.num_labels)
|
| 41 |
+
|
| 42 |
+
# 2a. Load the GooAQ dataset: https://huggingface.co/datasets/sentence-transformers/gooaq
|
| 43 |
+
logging.info("Read the gooaq training dataset")
|
| 44 |
+
full_dataset = load_dataset("sentence-transformers/gooaq", split="train").select(range(100_000))
|
| 45 |
+
dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12)
|
| 46 |
+
train_dataset = dataset_dict["train"]
|
| 47 |
+
eval_dataset = dataset_dict["test"]
|
| 48 |
+
logging.info(train_dataset)
|
| 49 |
+
logging.info(eval_dataset)
|
| 50 |
+
|
| 51 |
+
# 2b. Modify our training dataset to include hard negatives using a very efficient embedding model
|
| 52 |
+
embedding_model = SentenceTransformer("sentence-transformers/static-retrieval-mrl-en-v1", device="cpu")
|
| 53 |
+
hard_train_dataset = mine_hard_negatives(
|
| 54 |
+
train_dataset,
|
| 55 |
+
embedding_model,
|
| 56 |
+
num_negatives=num_hard_negatives, # How many negatives per question-answer pair
|
| 57 |
+
margin=0, # Similarity between query and negative samples should be x lower than query-positive similarity
|
| 58 |
+
range_min=0, # Skip the x most similar samples
|
| 59 |
+
range_max=100, # Consider only the x most similar samples
|
| 60 |
+
sampling_strategy="top", # Randomly sample negatives from the range
|
| 61 |
+
batch_size=4096, # Use a batch size of 4096 for the embedding model
|
| 62 |
+
output_format="labeled-pair", # The output format is (query, passage, label), as required by BinaryCrossEntropyLoss
|
| 63 |
+
use_faiss=True,
|
| 64 |
+
)
|
| 65 |
+
logging.info(hard_train_dataset)
|
| 66 |
+
|
| 67 |
+
# 2c. (Optionally) Save the hard training dataset to disk
|
| 68 |
+
# hard_train_dataset.save_to_disk("gooaq-hard-train")
|
| 69 |
+
# Load again with:
|
| 70 |
+
# hard_train_dataset = load_from_disk("gooaq-hard-train")
|
| 71 |
+
|
| 72 |
+
# 3. Define our training loss.
|
| 73 |
+
# pos_weight is recommended to be set as the ratio between positives to negatives, a.k.a. `num_hard_negatives`
|
| 74 |
+
loss = BinaryCrossEntropyLoss(model=model, pos_weight=torch.tensor(num_hard_negatives))
|
| 75 |
+
|
| 76 |
+
# 4a. Define evaluators. We use the CrossEncoderNanoBEIREvaluator, which is a light-weight evaluator for English reranking
|
| 77 |
+
nano_beir_evaluator = CrossEncoderNanoBEIREvaluator(
|
| 78 |
+
dataset_names=["msmarco", "nfcorpus", "nq"],
|
| 79 |
+
batch_size=train_batch_size,
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
# 4b. Define a reranking evaluator by mining hard negatives given query-answer pairs
|
| 83 |
+
# We include the positive answer in the list of negatives, so the evaluator can use the performance of the
|
| 84 |
+
# embedding model as a baseline.
|
| 85 |
+
hard_eval_dataset = mine_hard_negatives(
|
| 86 |
+
eval_dataset,
|
| 87 |
+
embedding_model,
|
| 88 |
+
corpus=full_dataset["answer"], # Use the full dataset as the corpus
|
| 89 |
+
num_negatives=30, # How many documents to rerank
|
| 90 |
+
batch_size=4096,
|
| 91 |
+
disqualify_positives=False,
|
| 92 |
+
output_format="n-tuple",
|
| 93 |
+
use_faiss=True,
|
| 94 |
+
)
|
| 95 |
+
logging.info(hard_eval_dataset)
|
| 96 |
+
reranking_evaluator = CrossEncoderRerankingEvaluator(
|
| 97 |
+
samples=[
|
| 98 |
+
{
|
| 99 |
+
"query": sample["question"],
|
| 100 |
+
"positive": [sample["answer"]],
|
| 101 |
+
"documents": [sample[column_name] for column_name in hard_eval_dataset.column_names[2:]],
|
| 102 |
+
}
|
| 103 |
+
for sample in hard_eval_dataset
|
| 104 |
+
],
|
| 105 |
+
batch_size=train_batch_size,
|
| 106 |
+
name="gooaq-dev",
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
# 4c. Combine the evaluators & run the base model on them
|
| 110 |
+
evaluator = SequentialEvaluator([reranking_evaluator, nano_beir_evaluator])
|
| 111 |
+
evaluator(model)
|
| 112 |
+
|
| 113 |
+
# 5. Define the training arguments
|
| 114 |
+
short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1]
|
| 115 |
+
run_name = f"reranker-{short_model_name}-gooaq-bce"
|
| 116 |
+
args = CrossEncoderTrainingArguments(
|
| 117 |
+
# Required parameter:
|
| 118 |
+
output_dir=f"models/{run_name}",
|
| 119 |
+
# Optional training parameters:
|
| 120 |
+
num_train_epochs=num_epochs,
|
| 121 |
+
per_device_train_batch_size=train_batch_size,
|
| 122 |
+
per_device_eval_batch_size=train_batch_size,
|
| 123 |
+
learning_rate=5e-4,
|
| 124 |
+
warmup_ratio=0.1,
|
| 125 |
+
fp16=False, # Set to False if you get an error that your GPU can't run on FP16
|
| 126 |
+
bf16=True, # Set to True if you have a GPU that supports BF16
|
| 127 |
+
load_best_model_at_end=True,
|
| 128 |
+
metric_for_best_model="eval_NanoBEIR_R100_mean_ndcg@10",
|
| 129 |
+
# Optional tracking/debugging parameters:
|
| 130 |
+
eval_strategy="steps",
|
| 131 |
+
eval_steps=20,
|
| 132 |
+
save_strategy="steps",
|
| 133 |
+
save_steps=20,
|
| 134 |
+
save_total_limit=2,
|
| 135 |
+
logging_steps=20,
|
| 136 |
+
logging_first_step=True,
|
| 137 |
+
run_name=run_name, # Will be used in W&B if `wandb` is installed
|
| 138 |
+
seed=12,
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
# 6. Create the trainer & start training
|
| 142 |
+
trainer = CrossEncoderTrainer(
|
| 143 |
+
model=model,
|
| 144 |
+
args=args,
|
| 145 |
+
train_dataset=hard_train_dataset,
|
| 146 |
+
loss=loss,
|
| 147 |
+
evaluator=evaluator,
|
| 148 |
+
)
|
| 149 |
+
trainer.train()
|
| 150 |
+
|
| 151 |
+
# 7. Evaluate the final model, useful to include these in the model card
|
| 152 |
+
evaluator(model)
|
| 153 |
+
|
| 154 |
+
# 8. Save the final model
|
| 155 |
+
final_output_dir = f"models/{run_name}/final"
|
| 156 |
+
model.save_pretrained(final_output_dir)
|
| 157 |
+
|
| 158 |
+
# 9. (Optional) save the model to the Hugging Face Hub!
|
| 159 |
+
# It is recommended to run `huggingface-cli login` to log into your Hugging Face account first
|
| 160 |
+
try:
|
| 161 |
+
model.push_to_hub(f"cross-encoder-testing/{run_name}")
|
| 162 |
+
except Exception:
|
| 163 |
+
logging.error(
|
| 164 |
+
f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run "
|
| 165 |
+
f"`huggingface-cli login`, followed by loading the model using `model = CrossEncoder({final_output_dir!r})` "
|
| 166 |
+
f"and saving it using `model.push_to_hub('{run_name}')`."
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
if __name__ == "__main__":
|
| 171 |
+
main()
|