Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,74 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
# **NICO++ DG Benchmark Subset (Unofficial)**
|
| 6 |
+
|
| 7 |
+
## Dataset Summary
|
| 8 |
+
|
| 9 |
+
This is a **non-official subset** of the [NICO++ dataset](https://arxiv.org/abs/2204.08040), designed for **Domain Generalization (DG)** evaluation.
|
| 10 |
+
We select **20 categories** across **6 domains**.
|
| 11 |
+
|
| 12 |
+
The dataset can be used to benchmark algorithms for **domain generalization, domain adaptation, and robustness testing**.
|
| 13 |
+
|
| 14 |
+
⚠️ **Note:** This dataset is **not the official release of NICO++**, but a re-organized subset curated for research purposes.
|
| 15 |
+
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
## Supported Tasks and Leaderboards
|
| 19 |
+
|
| 20 |
+
* **Domain Generalization (DG)**
|
| 21 |
+
* **Out-of-Distribution (OOD) Robustness**
|
| 22 |
+
* **Representation Learning with Multiple Contexts**
|
| 23 |
+
|
| 24 |
+
---
|
| 25 |
+
|
| 26 |
+
## Languages
|
| 27 |
+
|
| 28 |
+
* Images contain natural objects and scenes; no text annotations.
|
| 29 |
+
* Labels are in **English**.
|
| 30 |
+
|
| 31 |
+
---
|
| 32 |
+
|
| 33 |
+
## Dataset Structure
|
| 34 |
+
|
| 35 |
+
### Data Fields
|
| 36 |
+
|
| 37 |
+
Each sample contains:
|
| 38 |
+
|
| 39 |
+
* `image`: the input image (RGB)
|
| 40 |
+
* `label`: the class label (integer)
|
| 41 |
+
* `category`: the semantic category (string, one of 20)
|
| 42 |
+
* `domain`: the environment/domain (string, one of 6)
|
| 43 |
+
|
| 44 |
+
### Domains
|
| 45 |
+
|
| 46 |
+
We follow the DG benchmark setup:
|
| 47 |
+
|
| 48 |
+
```python
|
| 49 |
+
"domains" = ['autumn', 'dim', 'grass', 'outdoor', 'rock', 'water']
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
### Categories
|
| 53 |
+
|
| 54 |
+
The selected 20 categories are:
|
| 55 |
+
|
| 56 |
+
```python
|
| 57 |
+
"categories" = [
|
| 58 |
+
'kangaroo', 'dolphin', 'sailboat', 'pumpkin','gun','sheep','tent','mailbox','cactus','car',
|
| 59 |
+
'spider','tortoise','fox','lion','elephant','racket','umbrella','crab','giraffe','chair'
|
| 60 |
+
]
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
---
|
| 64 |
+
|
| 65 |
+
## Data Splits
|
| 66 |
+
|
| 67 |
+
The dataset is split into domains rather than standard train/val/test.
|
| 68 |
+
|
| 69 |
+
* Researchers may adopt **leave-one-domain-out** DG evaluation, where training uses 5 domains and testing uses the held-out one.
|
| 70 |
+
* Example: Train on {autumn, dim, grass, outdoor, rock}, Test on {water}.
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|