Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -39,7 +39,7 @@ human protein pairs interact directly or indirectly.
|
|
| 39 |
Reimand et al. g:Profiler-a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res. 2016 Jul 8;44(W1):W83-9. doi: 10.1093/nar/gkw199.
|
| 40 |
|
| 41 |
## Associated code
|
| 42 |
-
Additional code examples can be found on our [GitHub](), including:
|
| 43 |
importing the [DirectContacts2 model](sfisch/DirectContacts2_AutoGluon) to make predictions, importing the
|
| 44 |
training and testing data, or using the full feature matrix.
|
| 45 |
|
|
@@ -51,12 +51,12 @@ is used to is used train, test, and make predictions with the model.
|
|
| 51 |
|
| 52 |
This can be downloaded using the following:
|
| 53 |
|
| 54 |
-
$ pip install autogluon==0.
|
| 55 |
|
| 56 |
Then it can be imported as:
|
| 57 |
|
| 58 |
>>> from autogluon.tabular import TabularPredictor
|
| 59 |
-
Note that to perform operations with our model the **0.
|
| 60 |
|
| 61 |
The [DirectContacts2 model](sfisch/DirectContacts2_AutoGluon) can be accessed through HuggingFace with [huggingface_hub](https://huggingface.co/docs/hub/index)
|
| 62 |
|
|
@@ -64,7 +64,7 @@ The [DirectContacts2 model](sfisch/DirectContacts2_AutoGluon) can be accessed th
|
|
| 64 |
|
| 65 |
>>> model_dir = snapshot_download(repo_id="sfisch/DirectContacts2_AutoGluon")
|
| 66 |
|
| 67 |
-
>>> predictor = TabularPredictor.load(f"{model_dir}/
|
| 68 |
|
| 69 |
## Using the training and testing data
|
| 70 |
|
|
@@ -90,7 +90,7 @@ Jupyter notebooks containing more in-depth examples of model training, testing,
|
|
| 90 |
All other files, such as the full feature matrix, can be accessed via Huggingface_hub.
|
| 91 |
|
| 92 |
>>> from huggingface_hub import hf_hub_download
|
| 93 |
-
>>> full_file = hf_hub_download(repo_id="sfisch/DirectContacts2", filename='full/
|
| 94 |
|
| 95 |
This just provides the file for download. Depending on your workflow, if you wish to use as a pandas dataframe for example:
|
| 96 |
|
|
|
|
| 39 |
Reimand et al. g:Profiler-a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res. 2016 Jul 8;44(W1):W83-9. doi: 10.1093/nar/gkw199.
|
| 40 |
|
| 41 |
## Associated code
|
| 42 |
+
Additional code examples can be found on our [GitHub](https://github.com/KDrewLab/DirectContacts2_analysis.git), including:
|
| 43 |
importing the [DirectContacts2 model](sfisch/DirectContacts2_AutoGluon) to make predictions, importing the
|
| 44 |
training and testing data, or using the full feature matrix.
|
| 45 |
|
|
|
|
| 51 |
|
| 52 |
This can be downloaded using the following:
|
| 53 |
|
| 54 |
+
$ pip install autogluon==0.8.2
|
| 55 |
|
| 56 |
Then it can be imported as:
|
| 57 |
|
| 58 |
>>> from autogluon.tabular import TabularPredictor
|
| 59 |
+
Note that to perform operations with our model the **0.8.2 version** must be used
|
| 60 |
|
| 61 |
The [DirectContacts2 model](sfisch/DirectContacts2_AutoGluon) can be accessed through HuggingFace with [huggingface_hub](https://huggingface.co/docs/hub/index)
|
| 62 |
|
|
|
|
| 64 |
|
| 65 |
>>> model_dir = snapshot_download(repo_id="sfisch/DirectContacts2_AutoGluon")
|
| 66 |
|
| 67 |
+
>>> predictor = TabularPredictor.load(f"{model_dir}/DirectContacts2_Autogluon_Model")
|
| 68 |
|
| 69 |
## Using the training and testing data
|
| 70 |
|
|
|
|
| 90 |
All other files, such as the full feature matrix, can be accessed via Huggingface_hub.
|
| 91 |
|
| 92 |
>>> from huggingface_hub import hf_hub_download
|
| 93 |
+
>>> full_file = hf_hub_download(repo_id="sfisch/DirectContacts2", filename='full/humap3_full_feature_matrix_20220625.csv.gz', repo_type='dataset')
|
| 94 |
|
| 95 |
This just provides the file for download. Depending on your workflow, if you wish to use as a pandas dataframe for example:
|
| 96 |
|