sfisch commited on
Commit
bbada03
·
verified ·
1 Parent(s): 88fedd8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -39,7 +39,7 @@ human protein pairs interact directly or indirectly.
39
  Reimand et al. g:Profiler-a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res. 2016 Jul 8;44(W1):W83-9. doi: 10.1093/nar/gkw199.
40
 
41
  ## Associated code
42
- Additional code examples can be found on our [GitHub](), including:
43
  importing the [DirectContacts2 model](sfisch/DirectContacts2_AutoGluon) to make predictions, importing the
44
  training and testing data, or using the full feature matrix.
45
 
@@ -51,12 +51,12 @@ is used to is used train, test, and make predictions with the model.
51
 
52
  This can be downloaded using the following:
53
 
54
- $ pip install autogluon==0.4.0
55
 
56
  Then it can be imported as:
57
 
58
  >>> from autogluon.tabular import TabularPredictor
59
- Note that to perform operations with our model the **0.4.0 version** must be used
60
 
61
  The [DirectContacts2 model](sfisch/DirectContacts2_AutoGluon) can be accessed through HuggingFace with [huggingface_hub](https://huggingface.co/docs/hub/index)
62
 
@@ -64,7 +64,7 @@ The [DirectContacts2 model](sfisch/DirectContacts2_AutoGluon) can be accessed th
64
 
65
  >>> model_dir = snapshot_download(repo_id="sfisch/DirectContacts2_AutoGluon")
66
 
67
- >>> predictor = TabularPredictor.load(f"{model_dir}/DirectContacts2_Autogluon_Model_20230405")
68
 
69
  ## Using the training and testing data
70
 
@@ -90,7 +90,7 @@ Jupyter notebooks containing more in-depth examples of model training, testing,
90
  All other files, such as the full feature matrix, can be accessed via Huggingface_hub.
91
 
92
  >>> from huggingface_hub import hf_hub_download
93
- >>> full_file = hf_hub_download(repo_id="sfisch/DirectContacts2", filename='full/direct_contacts2_full_feature_matrix_20220625.csv.gz', repo_type='dataset')
94
 
95
  This just provides the file for download. Depending on your workflow, if you wish to use as a pandas dataframe for example:
96
 
 
39
  Reimand et al. g:Profiler-a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res. 2016 Jul 8;44(W1):W83-9. doi: 10.1093/nar/gkw199.
40
 
41
  ## Associated code
42
+ Additional code examples can be found on our [GitHub](https://github.com/KDrewLab/DirectContacts2_analysis.git), including:
43
  importing the [DirectContacts2 model](sfisch/DirectContacts2_AutoGluon) to make predictions, importing the
44
  training and testing data, or using the full feature matrix.
45
 
 
51
 
52
  This can be downloaded using the following:
53
 
54
+ $ pip install autogluon==0.8.2
55
 
56
  Then it can be imported as:
57
 
58
  >>> from autogluon.tabular import TabularPredictor
59
+ Note that to perform operations with our model the **0.8.2 version** must be used
60
 
61
  The [DirectContacts2 model](sfisch/DirectContacts2_AutoGluon) can be accessed through HuggingFace with [huggingface_hub](https://huggingface.co/docs/hub/index)
62
 
 
64
 
65
  >>> model_dir = snapshot_download(repo_id="sfisch/DirectContacts2_AutoGluon")
66
 
67
+ >>> predictor = TabularPredictor.load(f"{model_dir}/DirectContacts2_Autogluon_Model")
68
 
69
  ## Using the training and testing data
70
 
 
90
  All other files, such as the full feature matrix, can be accessed via Huggingface_hub.
91
 
92
  >>> from huggingface_hub import hf_hub_download
93
+ >>> full_file = hf_hub_download(repo_id="sfisch/DirectContacts2", filename='full/humap3_full_feature_matrix_20220625.csv.gz', repo_type='dataset')
94
 
95
  This just provides the file for download. Depending on your workflow, if you wish to use as a pandas dataframe for example:
96