|
|
import copy |
|
|
from diffusers.configuration_utils import register_to_config |
|
|
from typing import Any, Dict, Optional, Union, List, Tuple |
|
|
import numpy as np |
|
|
import torch |
|
|
from diffusers.models.transformers.transformer_flux import ( |
|
|
FluxTransformer2DModel, |
|
|
Transformer2DModelOutput, |
|
|
) |
|
|
from diffusers.utils import unscale_lora_layers,is_torch_version,USE_PEFT_BACKEND,scale_lora_layers,logging |
|
|
from .lora_switching_module import enable_lora, module_active_adapters |
|
|
from .SubjectGeniusTransformerBlock import block_forward,single_block_forward |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
class SubjectGeniusTransformer2DModel(FluxTransformer2DModel): |
|
|
@register_to_config |
|
|
def __init__( |
|
|
self, |
|
|
patch_size: int = 1, |
|
|
in_channels: int = 64, |
|
|
out_channels: Optional[int] = None, |
|
|
num_layers: int = 19, |
|
|
num_single_layers: int = 38, |
|
|
attention_head_dim: int = 128, |
|
|
num_attention_heads: int = 24, |
|
|
joint_attention_dim: int = 4096, |
|
|
pooled_projection_dim: int = 768, |
|
|
guidance_embeds: bool = False, |
|
|
axes_dims_rope: Tuple[int] = (16, 56, 56), |
|
|
): |
|
|
super().__init__(patch_size, |
|
|
in_channels, |
|
|
out_channels, |
|
|
num_layers, |
|
|
num_single_layers, |
|
|
attention_head_dim, |
|
|
num_attention_heads, |
|
|
joint_attention_dim, |
|
|
pooled_projection_dim, |
|
|
guidance_embeds, |
|
|
axes_dims_rope) |
|
|
|
|
|
def forward(self, |
|
|
hidden_states: torch.Tensor, |
|
|
condition_latents: List[torch.Tensor], |
|
|
condition_ids: List[torch.Tensor], |
|
|
condition_type_ids: List[torch.Tensor], |
|
|
condition_types: List[str], |
|
|
model_config: Optional[Dict[str, Any]] = {}, |
|
|
return_condition_latents: bool = False, |
|
|
c_t=0, |
|
|
encoder_hidden_states: torch.Tensor = None, |
|
|
pooled_projections: torch.Tensor = None, |
|
|
timestep: torch.LongTensor = None, |
|
|
img_ids: torch.Tensor = None, |
|
|
txt_ids: torch.Tensor = None, |
|
|
guidance: torch.Tensor = None, |
|
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
|
controlnet_block_samples=None, |
|
|
controlnet_single_block_samples=None, |
|
|
return_dict: bool = True, |
|
|
controlnet_blocks_repeat: bool = False, |
|
|
) -> tuple[Any, None] | tuple[Any, Any | None] | Transformer2DModelOutput: |
|
|
use_condition = condition_latents is not None |
|
|
|
|
|
|
|
|
if joint_attention_kwargs is not None: |
|
|
joint_attention_kwargs = joint_attention_kwargs.copy() |
|
|
lora_scale = joint_attention_kwargs.pop("scale", 1.0) |
|
|
else: |
|
|
lora_scale = 1.0 |
|
|
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
|
|
scale_lora_layers(self, lora_scale) |
|
|
else: |
|
|
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: |
|
|
logger.warning( |
|
|
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." |
|
|
) |
|
|
|
|
|
with enable_lora([self.x_embedder],[item for item in module_active_adapters(self.x_embedder) if item not in condition_types]): |
|
|
hidden_states = self.x_embedder(hidden_states) |
|
|
|
|
|
if use_condition: |
|
|
condition_latents = copy.deepcopy(condition_latents) |
|
|
for i, cond_type in enumerate(condition_types): |
|
|
with enable_lora([self.x_embedder],[cond_type]): |
|
|
condition_latents[i] = self.x_embedder(condition_latents[i]) |
|
|
|
|
|
|
|
|
encoder_hidden_states = self.context_embedder(encoder_hidden_states) |
|
|
|
|
|
|
|
|
timestep = timestep.to(hidden_states.dtype) * 1000 |
|
|
if guidance is not None: |
|
|
guidance = guidance.to(hidden_states.dtype) * 1000 |
|
|
else: |
|
|
guidance = None |
|
|
|
|
|
|
|
|
temb = ( |
|
|
self.time_text_embed(timestep, pooled_projections) |
|
|
if guidance is None |
|
|
else self.time_text_embed(timestep, guidance, pooled_projections) |
|
|
) |
|
|
|
|
|
cond_temb = ( |
|
|
self.time_text_embed(torch.ones_like(timestep) * c_t * 1000, pooled_projections) |
|
|
if guidance is None |
|
|
else self.time_text_embed(torch.ones_like(timestep) * c_t * 1000, guidance, pooled_projections) |
|
|
) |
|
|
|
|
|
|
|
|
if hasattr(self, "cond_type_embed") and condition_type_ids is not None: |
|
|
cond_type_proj = self.time_text_embed.time_proj(condition_type_ids[0]) |
|
|
cond_type_emb = self.cond_type_embed(cond_type_proj.to(dtype=cond_temb.dtype)) |
|
|
cond_temb = cond_temb + cond_type_emb |
|
|
|
|
|
|
|
|
if txt_ids.ndim == 3: |
|
|
logger.warning( |
|
|
"Passing `txt_ids` 3d torch.Tensor is deprecated." |
|
|
"Please remove the batch dimension and pass it as a 2d torch Tensor" |
|
|
) |
|
|
txt_ids = txt_ids[0] |
|
|
if img_ids.ndim == 3: |
|
|
logger.warning( |
|
|
"Passing `img_ids` 3d torch.Tensor is deprecated." |
|
|
"Please remove the batch dimension and pass it as a 2d torch Tensor" |
|
|
) |
|
|
img_ids = img_ids[0] |
|
|
|
|
|
ids = torch.cat((txt_ids, img_ids), dim=0) |
|
|
image_rotary_emb = tuple(i.to(self.dtype) for i in self.pos_embed(ids)) |
|
|
cond_rotary_embs = [] |
|
|
if use_condition: |
|
|
for cond_id in condition_ids: |
|
|
cond_rotary_embs.append(tuple(i.to(self.dtype) for i in self.pos_embed(cond_id))) |
|
|
|
|
|
|
|
|
for index_block, block in enumerate(self.transformer_blocks): |
|
|
encoder_hidden_states, hidden_states, condition_latents = block_forward( |
|
|
block, |
|
|
model_config=model_config, |
|
|
hidden_states=hidden_states, |
|
|
encoder_hidden_states=encoder_hidden_states, |
|
|
condition_latents= condition_latents if use_condition else None, |
|
|
condition_types = condition_types if use_condition else None, |
|
|
temb=temb, |
|
|
cond_temb=cond_temb if use_condition else None, |
|
|
image_rotary_emb=image_rotary_emb, |
|
|
cond_rotary_embs=cond_rotary_embs if use_condition else None, |
|
|
) |
|
|
|
|
|
if controlnet_block_samples is not None: |
|
|
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples) |
|
|
interval_control = int(np.ceil(interval_control)) |
|
|
hidden_states = (hidden_states + controlnet_block_samples[index_block // interval_control]) |
|
|
|
|
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) |
|
|
|
|
|
|
|
|
for index_block, block in enumerate(self.single_transformer_blocks): |
|
|
hidden_states, condition_latents = single_block_forward( |
|
|
block, |
|
|
model_config=model_config, |
|
|
hidden_states=hidden_states, |
|
|
condition_latents= condition_latents if use_condition else None, |
|
|
condition_types=condition_types if use_condition else None, |
|
|
temb=temb, |
|
|
cond_temb= cond_temb if use_condition else None, |
|
|
image_rotary_emb=image_rotary_emb, |
|
|
cond_rotary_embs= cond_rotary_embs if use_condition else None, |
|
|
) |
|
|
|
|
|
if controlnet_single_block_samples is not None: |
|
|
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples) |
|
|
interval_control = int(np.ceil(interval_control)) |
|
|
hidden_states[:, encoder_hidden_states.shape[1]:, ...] = ( |
|
|
hidden_states[:, encoder_hidden_states.shape[1]:, ...]+ controlnet_single_block_samples[index_block // interval_control] |
|
|
) |
|
|
|
|
|
hidden_states = hidden_states[:, encoder_hidden_states.shape[1]:, ...] |
|
|
|
|
|
hidden_states = self.norm_out(hidden_states, temb).to(self.dtype) |
|
|
output = self.proj_out(hidden_states) |
|
|
if return_condition_latents: |
|
|
condition_latents = [ self.proj_out(self.norm_out(i, cond_temb)) if use_condition else None for i in condition_latents] |
|
|
|
|
|
if USE_PEFT_BACKEND: |
|
|
unscale_lora_layers(self, lora_scale) |
|
|
if not return_dict: |
|
|
return (output,None) if not return_condition_latents else (output, condition_latents) |
|
|
|
|
|
return Transformer2DModelOutput(sample=output) |
|
|
|