Subject_Genius / src /SubjectGeniusTransformerBlock.py
cyd0806's picture
Upload src/SubjectGeniusTransformerBlock.py with huggingface_hub
66bfb92 verified
import ipdb
import torch
from typing import List, Optional, Dict, Any
from torch import FloatTensor, Tensor
from diffusers.models.attention_processor import Attention, F
from .lora_switching_module import enable_lora,module_active_adapters
from diffusers.models.embeddings import apply_rotary_emb
def attn_forward(
attn: Attention,
hidden_states: torch.FloatTensor,
condition_types: List[str],
encoder_hidden_states: torch.FloatTensor = None,
condition_latents: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
cond_rotary_embs: Optional[List[torch.Tensor]] = None,
model_config: Optional[Dict[str, Any]] = {},
) -> tuple[Any, Any, list[FloatTensor] | None] | tuple[Any, Any] | tuple[Tensor, Tensor] | Tensor:
batch_size, seq_len, _ = hidden_states.shape
# base_key / base_value: [text,noise] if encoder_hidden_states is not None else [noise]
with enable_lora([attn.to_q, attn.to_k, attn.to_v], [item for item in module_active_adapters(attn.to_q) if item not in condition_types]):
base_key = attn.to_k(hidden_states)
base_value = attn.to_v(hidden_states)
query = attn.to_q(hidden_states)
inner_dim = query.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
base_key = base_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
base_value = base_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
base_key = attn.norm_k(base_key)
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
if encoder_hidden_states is not None:
# `context` projections.
seq_len = seq_len + encoder_hidden_states.shape[1]
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(
encoder_hidden_states_query_proj
)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(
encoder_hidden_states_key_proj
)
# concat the text embedding and noise embedding
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
base_key = torch.cat([encoder_hidden_states_key_proj, base_key], dim=2)
base_value = torch.cat([encoder_hidden_states_value_proj, base_value], dim=2)
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
base_key = apply_rotary_emb(base_key, image_rotary_emb)
condition_latents_output_list = []
key = base_key
value = base_value
if condition_latents is not None and len(condition_latents) > 0:
for i, cond_type in enumerate(condition_types):
with enable_lora([attn.to_q,attn.to_k, attn.to_v], [cond_type]):
cond_query = attn.to_q(condition_latents[i])
cond_key = attn.to_k(condition_latents[i])
cond_value = attn.to_v(condition_latents[i])
cond_query = cond_query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
cond_key = cond_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
cond_value = cond_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
cond_query = attn.norm_q(cond_query)
if attn.norm_k is not None:
cond_key = attn.norm_k(cond_key)
if cond_rotary_embs is not None:
cond_query = apply_rotary_emb(cond_query, cond_rotary_embs[i])
cond_key = apply_rotary_emb(cond_key, cond_rotary_embs[i])
key = torch.cat([key, cond_key], dim=2)
value = torch.cat([value, cond_value], dim=2)
mix_cond_key = torch.cat([base_key, cond_key], dim=2)
mix_cond_value = torch.cat([base_value, cond_value], dim=2)
condition_latents_output = F.scaled_dot_product_attention(
cond_query, mix_cond_key, mix_cond_value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask
)
condition_latents_output = condition_latents_output.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
condition_latents_output_list.append(condition_latents_output)
hidden_states = F.scaled_dot_product_attention(
query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask
)
hidden_states = hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim
)
if encoder_hidden_states is not None:
encoder_hidden_states, hidden_states = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[:, encoder_hidden_states.shape[1] :],
)
with enable_lora([attn.to_out[0]], [item for item in module_active_adapters(attn.to_out[0]) if item not in condition_types]):
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
if condition_latents is not None and len(condition_latents) > 0:
for i, cond_type in enumerate(condition_types):
with enable_lora([attn.to_out[0]], [cond_type]):
condition_latents_output_list[i] = attn.to_out[0](condition_latents_output_list[i])
condition_latents_output_list[i] = attn.to_out[1](condition_latents_output_list[i])
return hidden_states, encoder_hidden_states, condition_latents_output_list
else:
return hidden_states, condition_latents_output_list
def block_forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
condition_latents: List[torch.Tensor] = None,
temb: torch.Tensor = None,
cond_temb: List[torch.Tensor] = None,
cond_rotary_embs=None,
image_rotary_emb=None,
condition_types: List[str]=None,
model_config: Optional[Dict[str, Any]] = {},
):
use_cond = condition_latents is not None and len(condition_latents) > 0
# norm : hidden_states->norm_hidden_states, encoder_hidden_states->norm_encoder_hidden_states, condition_latents->norm_condition_latent_list
with enable_lora([self.norm1.linear], [item for item in module_active_adapters(self.norm1.linear) if item not in condition_types]):
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, emb=temb
)
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = (
self.norm1_context(encoder_hidden_states, emb=temb)
)
norm_condition_latent_list = []
cond_gate_msa_list = []
cond_shift_mlp_list = []
cond_scale_mlp_list = []
cond_gate_mlp_list = []
if use_cond:
for i, cond_type in enumerate(condition_types):
with enable_lora([self.norm1.linear],[cond_type]):
norm_condition_latent,cond_gate_msa,cond_shift_mlp,cond_scale_mlp,cond_gate_mlp,= self.norm1(
condition_latents[i], emb=cond_temb
)
norm_condition_latent_list.append(norm_condition_latent)
cond_gate_msa_list.append(cond_gate_msa)
cond_shift_mlp_list.append(cond_shift_mlp)
cond_scale_mlp_list.append(cond_scale_mlp)
cond_gate_mlp_list.append(cond_gate_mlp)
# Attention. attn_output, context_attn_output, cond_attn_output_list
attn_output, context_attn_output,cond_attn_output_list = attn_forward(
self.attn,
model_config=model_config,
hidden_states=norm_hidden_states,
condition_types=condition_types,
encoder_hidden_states=norm_encoder_hidden_states,
condition_latents=norm_condition_latent_list if use_cond else None,
image_rotary_emb=image_rotary_emb,
cond_rotary_embs=cond_rotary_embs if use_cond else None,
)
# Process attention outputs. Gate + Resnet. hidden_states, encoder_hidden_states, condition_latents
# 1. hidden_states
attn_output = gate_msa.unsqueeze(1) * attn_output
hidden_states = hidden_states + attn_output
# 2. encoder_hidden_states
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
encoder_hidden_states = encoder_hidden_states + context_attn_output
# 3. condition_latents
if use_cond:
for i, cond_type in enumerate(condition_types):
cond_attn_output_list[i] = cond_gate_msa_list[i].unsqueeze(1) * cond_attn_output_list[i]
condition_latents[i] = condition_latents[i] + cond_attn_output_list[i]
if model_config.get("add_cond_attn", False):
hidden_states += cond_attn_output_list[i]
# LayerNorm + Scaling + Shift.
# hidden_states->norm_hidden_states, encoder_hidden_states->norm_encoder_hidden_states, condition_latents->norm_condition_latent_list
# 1. hidden_states
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
# 2. encoder_hidden_states
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
# 3. condition_latents
if use_cond:
for i, cond_type in enumerate(condition_types):
norm_condition_latent_list[i] = self.norm2(condition_latents[i])
norm_condition_latent_list[i] = norm_condition_latent_list[i] * (1 + cond_scale_mlp_list[i][:, None]) + cond_shift_mlp_list[i][:, None]
# MLP Feed-forward + Gate
# 1. hidden_states
with enable_lora([self.ff.net[2]], [item for item in module_active_adapters(self.ff.net[2]) if item not in condition_types]):
hidden_states = hidden_states + gate_mlp.unsqueeze(1) * self.ff(norm_hidden_states)
# 2. encoder_hidden_states
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * self.ff_context(norm_encoder_hidden_states)
# 3. condition_latents
if use_cond:
for i, cond_type in enumerate(condition_types):
with enable_lora([self.ff.net[2]], [cond_type]):
condition_latents[i] = condition_latents[i] + cond_gate_mlp_list[i].unsqueeze(1) * self.ff(norm_condition_latent_list[i])
# Clip to avoid overflow.
if encoder_hidden_states.dtype == torch.float16:
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
return encoder_hidden_states, hidden_states, condition_latents if use_cond else None
def single_block_forward(
self,
hidden_states: torch.Tensor,
condition_latents: List[torch.Tensor] = None,
temb: torch.Tensor = None,
cond_temb: List[torch.Tensor] = None,
image_rotary_emb=None,
cond_rotary_embs=None,
condition_types: List[str] = None,
model_config: Optional[Dict[str, Any]] = {},
):
using_cond = condition_latents is not None and len(condition_latents) > 0
with enable_lora([self.norm.linear,self.proj_mlp],[item for item in module_active_adapters(self.norm.linear) if item not in condition_types]):
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
norm_condition_latent_list = []
mlp_condition_latent_list = []
cond_gate_list = []
if using_cond:
for i, cond_type in enumerate(condition_types):
with enable_lora([self.norm.linear, self.proj_mlp],[cond_type]):
norm_condition_latents, cond_gate = self.norm(condition_latents[i], emb=cond_temb)
mlp_condition_latents = self.act_mlp(self.proj_mlp(norm_condition_latents))
norm_condition_latent_list.append(norm_condition_latents)
mlp_condition_latent_list.append(mlp_condition_latents)
cond_gate_list.append(cond_gate)
attn_output, cond_attn_output = attn_forward(
self.attn,
model_config=model_config,
hidden_states=norm_hidden_states,
condition_types= condition_types,
image_rotary_emb=image_rotary_emb,
**(
{
"condition_latents": norm_condition_latent_list,
"cond_rotary_embs": cond_rotary_embs if using_cond else None,
}
if using_cond
else {}
),
)
with enable_lora([self.proj_out], [item for item in module_active_adapters(self.proj_out) if item not in condition_types]):
hidden_states = hidden_states + gate.unsqueeze(1) * self.proj_out(torch.cat([attn_output, mlp_hidden_states], dim=2))
if using_cond:
for i, cond_type in enumerate(condition_types):
with enable_lora([self.proj_out],[cond_type]):
attn_mlp_condition_latents = torch.cat([cond_attn_output[i], mlp_condition_latent_list[i]], dim=2)
attn_mlp_condition_latents = cond_gate_list[i].unsqueeze(1) * self.proj_out(attn_mlp_condition_latents)
condition_latents[i] = condition_latents[i] + attn_mlp_condition_latents
if hidden_states.dtype == torch.float16:
hidden_states = hidden_states.clip(-65504, 65504)
return (hidden_states,None) if not using_cond else (hidden_states, condition_latents)