|
|
import os.path |
|
|
|
|
|
import ipdb |
|
|
from peft import set_peft_model_state_dict,get_peft_model_state_dict |
|
|
from diffusers import FluxPipeline |
|
|
from diffusers.training_utils import cast_training_params |
|
|
|
|
|
def save_model_hook(models, weights, output_dir,wanted_model, accelerator,adapter_names): |
|
|
if accelerator.is_main_process: |
|
|
transformer_lora_layers_to_save = None |
|
|
for model in models: |
|
|
if isinstance(model, type(accelerator.unwrap_model(wanted_model))): |
|
|
transformer_lora_layers_to_save = {adapter_name: get_peft_model_state_dict(model,adapter_name=adapter_name) for adapter_name in adapter_names} |
|
|
else: |
|
|
raise ValueError(f"unexpected save model: {model.__class__}") |
|
|
|
|
|
|
|
|
if weights: |
|
|
weights.pop() |
|
|
for adapter_name,lora in transformer_lora_layers_to_save.items(): |
|
|
FluxPipeline.save_lora_weights( |
|
|
os.path.join(output_dir,adapter_name), |
|
|
transformer_lora_layers=lora, |
|
|
) |
|
|
|
|
|
|
|
|
def load_model_hook(models, input_dir,wanted_model, accelerator,adapter_names): |
|
|
transformer_ = None |
|
|
while len(models) > 0: |
|
|
model = models.pop() |
|
|
if isinstance(model, type(accelerator.unwrap_model(wanted_model))): |
|
|
transformer_ = model |
|
|
else: |
|
|
raise ValueError(f"unexpected save model: {model.__class__}") |
|
|
|
|
|
lora_state_dict_list = [] |
|
|
for adapter_name in adapter_names: |
|
|
lora_path = os.path.join(input_dir,adapter_name) |
|
|
lora_state_dict_list.append(FluxPipeline.lora_state_dict(lora_path)) |
|
|
transformer_lora_state_dict_list = [] |
|
|
for lora_state_dict in lora_state_dict_list: |
|
|
transformer_lora_state_dict_list.append({ |
|
|
f'{k.replace("transformer.", "")}': v |
|
|
for k, v in lora_state_dict.items() |
|
|
if k.startswith("transformer.") and "lora" in k |
|
|
}) |
|
|
incompatible_keys = [set_peft_model_state_dict(transformer_, transformer_lora_state_dict_list[i], adapter_name=adapter_name) for i,adapter_name in enumerate(adapter_names)] |
|
|
if incompatible_keys is not None: |
|
|
|
|
|
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) |
|
|
if unexpected_keys: |
|
|
accelerator.warning( |
|
|
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " |
|
|
f" {unexpected_keys}. " |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if accelerator.mixed_precision == "fp16": |
|
|
models = [transformer_] |
|
|
|
|
|
cast_training_params(models) |