|
|
import ipdb |
|
|
import torch |
|
|
|
|
|
def _encode_prompt_with_t5( |
|
|
text_encoder, |
|
|
tokenizer, |
|
|
max_sequence_length=512, |
|
|
prompt=None, |
|
|
num_images_per_prompt=1, |
|
|
device=None, |
|
|
text_input_ids=None, |
|
|
): |
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
|
batch_size = len(prompt) |
|
|
|
|
|
if tokenizer is not None: |
|
|
text_inputs = tokenizer( |
|
|
prompt, |
|
|
padding="max_length", |
|
|
max_length=max_sequence_length, |
|
|
truncation=True, |
|
|
return_length=False, |
|
|
return_overflowing_tokens=False, |
|
|
return_tensors="pt", |
|
|
) |
|
|
text_input_ids = text_inputs.input_ids |
|
|
else: |
|
|
if text_input_ids is None: |
|
|
raise ValueError("text_input_ids must be provided when the tokenizer is not specified") |
|
|
|
|
|
prompt_embeds = text_encoder(text_input_ids.to(device))[0] |
|
|
|
|
|
dtype = text_encoder.dtype |
|
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) |
|
|
|
|
|
_, seq_len, _ = prompt_embeds.shape |
|
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
|
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
return prompt_embeds |
|
|
|
|
|
|
|
|
def _encode_prompt_with_clip( |
|
|
text_encoder, |
|
|
tokenizer, |
|
|
prompt: str, |
|
|
device=None, |
|
|
text_input_ids=None, |
|
|
num_images_per_prompt: int = 1, |
|
|
): |
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
|
batch_size = len(prompt) |
|
|
|
|
|
if tokenizer is not None: |
|
|
text_inputs = tokenizer( |
|
|
prompt, |
|
|
padding="max_length", |
|
|
max_length=77, |
|
|
truncation=True, |
|
|
return_overflowing_tokens=False, |
|
|
return_length=False, |
|
|
return_tensors="pt", |
|
|
) |
|
|
|
|
|
text_input_ids = text_inputs.input_ids |
|
|
else: |
|
|
if text_input_ids is None: |
|
|
raise ValueError("text_input_ids must be provided when the tokenizer is not specified") |
|
|
|
|
|
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=False) |
|
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds.pooler_output |
|
|
prompt_embeds = prompt_embeds.to(dtype=text_encoder.dtype, device=device) |
|
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
|
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) |
|
|
|
|
|
return prompt_embeds |
|
|
|
|
|
|
|
|
def encode_prompt( |
|
|
text_encoders, |
|
|
tokenizers, |
|
|
prompt: str, |
|
|
max_sequence_length, |
|
|
device=None, |
|
|
num_images_per_prompt: int = 1, |
|
|
text_input_ids_list=None, |
|
|
): |
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
|
dtype = text_encoders[0].dtype |
|
|
|
|
|
pooled_prompt_embeds = _encode_prompt_with_clip( |
|
|
text_encoder=text_encoders[0], |
|
|
tokenizer=tokenizers[0], |
|
|
prompt=prompt, |
|
|
device=device if device is not None else text_encoders[0].device, |
|
|
num_images_per_prompt=num_images_per_prompt, |
|
|
text_input_ids=text_input_ids_list[0] if text_input_ids_list else None, |
|
|
) |
|
|
|
|
|
prompt_embeds = _encode_prompt_with_t5( |
|
|
text_encoder=text_encoders[1], |
|
|
tokenizer=tokenizers[1], |
|
|
max_sequence_length=max_sequence_length, |
|
|
prompt=prompt, |
|
|
num_images_per_prompt=num_images_per_prompt, |
|
|
device=device if device is not None else text_encoders[1].device, |
|
|
text_input_ids=text_input_ids_list[1] if text_input_ids_list else None, |
|
|
) |
|
|
|
|
|
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) |
|
|
|
|
|
return prompt_embeds, pooled_prompt_embeds, text_ids |
|
|
|