Upload src/SubjectGeniusPipeline.py with huggingface_hub
Browse files- src/SubjectGeniusPipeline.py +246 -0
src/SubjectGeniusPipeline.py
ADDED
|
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import ipdb
|
| 2 |
+
from accelerate import Accelerator
|
| 3 |
+
from diffusers.configuration_utils import register_to_config
|
| 4 |
+
from diffusers.pipelines import FluxPipeline
|
| 5 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
| 6 |
+
import torch
|
| 7 |
+
from .condition import Condition
|
| 8 |
+
from diffusers.pipelines.flux.pipeline_flux import (
|
| 9 |
+
FluxPipelineOutput,
|
| 10 |
+
calculate_shift,
|
| 11 |
+
retrieve_timesteps,
|
| 12 |
+
np,
|
| 13 |
+
)
|
| 14 |
+
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
| 15 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
| 16 |
+
from diffusers.models import AutoencoderKL,FluxTransformer2DModel
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class SubjectGeniusPipeline(FluxPipeline):
|
| 20 |
+
@register_to_config
|
| 21 |
+
def __init__(
|
| 22 |
+
self,
|
| 23 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
| 24 |
+
vae: AutoencoderKL,
|
| 25 |
+
text_encoder: CLIPTextModel,
|
| 26 |
+
tokenizer: CLIPTokenizer,
|
| 27 |
+
text_encoder_2: T5EncoderModel,
|
| 28 |
+
tokenizer_2: T5TokenizerFast,
|
| 29 |
+
transformer: FluxTransformer2DModel,
|
| 30 |
+
image_encoder = None,
|
| 31 |
+
feature_extractor = None,
|
| 32 |
+
):
|
| 33 |
+
super().__init__(
|
| 34 |
+
scheduler=scheduler,
|
| 35 |
+
vae=vae,
|
| 36 |
+
text_encoder=text_encoder,
|
| 37 |
+
tokenizer=tokenizer,
|
| 38 |
+
text_encoder_2=text_encoder_2,
|
| 39 |
+
tokenizer_2=tokenizer_2,
|
| 40 |
+
transformer=transformer,
|
| 41 |
+
image_encoder = image_encoder,
|
| 42 |
+
feature_extractor = feature_extractor,
|
| 43 |
+
)
|
| 44 |
+
@property
|
| 45 |
+
def all_adapters(self):
|
| 46 |
+
list_adapters = self.get_list_adapters() # eg {"unet": ["adapter1", "adapter2"], "text_encoder": ["adapter2"]}
|
| 47 |
+
# eg ["adapter1", "adapter2"]
|
| 48 |
+
all_adapters = list({adapter for adapters in list_adapters.values() for adapter in adapters})
|
| 49 |
+
return all_adapters
|
| 50 |
+
|
| 51 |
+
@torch.no_grad()
|
| 52 |
+
def __call__(self,
|
| 53 |
+
prompt: Union[str, List[str]] = None,
|
| 54 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 55 |
+
# additional begin
|
| 56 |
+
conditions: List[Condition] = None,
|
| 57 |
+
model_config: Optional[Dict[str, Any]] = {},
|
| 58 |
+
condition_scale: float = 1.0,
|
| 59 |
+
# additional over
|
| 60 |
+
height: Optional[int] = 512,
|
| 61 |
+
width: Optional[int] = 512,
|
| 62 |
+
num_inference_steps: int = 28,
|
| 63 |
+
timesteps: List[int] = None,
|
| 64 |
+
guidance_scale: float = 3.5,
|
| 65 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 66 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 67 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 68 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 69 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 70 |
+
output_type: Optional[str] = "pil",
|
| 71 |
+
return_dict: bool = True,
|
| 72 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 73 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 74 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 75 |
+
max_sequence_length: int = 512,
|
| 76 |
+
accelerator: Accelerator = None,
|
| 77 |
+
):
|
| 78 |
+
# self.block_mask_routers = nn.ModuleList(
|
| 79 |
+
# [nn.Sequential(nn.Linear(self.transformer.config.attention_head_dim * self.transformer.config.num_attention_heads, 1, bias=False), nn.Tanh()) for _ in
|
| 80 |
+
# range(self.transformer.config.num_layers)]
|
| 81 |
+
# ).to(accelerator.device,dtype=torch.bfloat16)
|
| 82 |
+
# self.single_block_mask_routers = nn.ModuleList(
|
| 83 |
+
# [nn.Sequential(nn.Linear(self.transformer.config.attention_head_dim * self.transformer.config.num_attention_heads, 1, bias=False), nn.Tanh()) for _ in
|
| 84 |
+
# range(self.transformer.config.num_single_layers)]
|
| 85 |
+
# ).to(accelerator.device,dtype=torch.bfloat16)
|
| 86 |
+
|
| 87 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
| 88 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
| 89 |
+
|
| 90 |
+
# 1. Check inputs. Raise error if not correct
|
| 91 |
+
self.check_inputs(
|
| 92 |
+
prompt,
|
| 93 |
+
prompt_2,
|
| 94 |
+
height,
|
| 95 |
+
width,
|
| 96 |
+
prompt_embeds=prompt_embeds,
|
| 97 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 98 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
| 99 |
+
max_sequence_length=max_sequence_length,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
self._guidance_scale = guidance_scale
|
| 103 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
| 104 |
+
self._interrupt = False
|
| 105 |
+
|
| 106 |
+
# 2. Define call parameters
|
| 107 |
+
if prompt is not None and isinstance(prompt, str):
|
| 108 |
+
batch_size = 1
|
| 109 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 110 |
+
batch_size = len(prompt)
|
| 111 |
+
else:
|
| 112 |
+
batch_size = prompt_embeds.shape[0]
|
| 113 |
+
device = self._execution_device
|
| 114 |
+
|
| 115 |
+
lora_scale = (
|
| 116 |
+
self.joint_attention_kwargs.get("scale", None)
|
| 117 |
+
if self.joint_attention_kwargs is not None
|
| 118 |
+
else None
|
| 119 |
+
)
|
| 120 |
+
(
|
| 121 |
+
prompt_embeds,
|
| 122 |
+
pooled_prompt_embeds,
|
| 123 |
+
text_ids,
|
| 124 |
+
) = self.encode_prompt(
|
| 125 |
+
prompt=prompt,
|
| 126 |
+
prompt_2=prompt_2,
|
| 127 |
+
prompt_embeds=prompt_embeds,
|
| 128 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 129 |
+
device=device,
|
| 130 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 131 |
+
max_sequence_length=max_sequence_length,
|
| 132 |
+
lora_scale=lora_scale,
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# 3. Prepare latent variables
|
| 136 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
| 137 |
+
latents, latent_image_ids = self.prepare_latents(
|
| 138 |
+
batch_size * num_images_per_prompt,
|
| 139 |
+
num_channels_latents,
|
| 140 |
+
height,
|
| 141 |
+
width,
|
| 142 |
+
prompt_embeds.dtype,
|
| 143 |
+
device,
|
| 144 |
+
generator,
|
| 145 |
+
latents,
|
| 146 |
+
)
|
| 147 |
+
# 4. Prepare conditions
|
| 148 |
+
condition_latents, condition_ids, condition_type_ids, condition_types = ([] for _ in range(4))
|
| 149 |
+
use_condition = conditions is not None
|
| 150 |
+
|
| 151 |
+
if use_condition:
|
| 152 |
+
for condition in conditions:
|
| 153 |
+
tokens,ids,type_id = condition.encode(self)
|
| 154 |
+
condition_latents.append(tokens)
|
| 155 |
+
condition_ids.append(ids)
|
| 156 |
+
condition_type_ids.append(type_id)
|
| 157 |
+
condition_types.append(condition.condition_type)
|
| 158 |
+
|
| 159 |
+
# 5. Prepare timesteps
|
| 160 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
| 161 |
+
image_seq_len = latents.shape[1]
|
| 162 |
+
mu = calculate_shift(
|
| 163 |
+
image_seq_len,
|
| 164 |
+
self.scheduler.config.base_image_seq_len,
|
| 165 |
+
self.scheduler.config.max_image_seq_len,
|
| 166 |
+
self.scheduler.config.base_shift,
|
| 167 |
+
self.scheduler.config.max_shift,
|
| 168 |
+
)
|
| 169 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 170 |
+
self.scheduler,
|
| 171 |
+
num_inference_steps,
|
| 172 |
+
device,
|
| 173 |
+
timesteps,
|
| 174 |
+
sigmas,
|
| 175 |
+
mu=mu,
|
| 176 |
+
)
|
| 177 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
| 178 |
+
self._num_timesteps = len(timesteps)
|
| 179 |
+
|
| 180 |
+
# handle guidance: Decide whether to enable guidance according to the configuration in base model's config file.
|
| 181 |
+
# example: Flux-dev: True ; Flux-schnell: False.
|
| 182 |
+
if self.transformer.config.guidance_embeds:
|
| 183 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=latents.dtype)
|
| 184 |
+
guidance = guidance.expand(latents.shape[0])
|
| 185 |
+
else:
|
| 186 |
+
guidance = None
|
| 187 |
+
|
| 188 |
+
# 6. Denoising loop
|
| 189 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 190 |
+
for i, t in enumerate(timesteps):
|
| 191 |
+
if self.interrupt:
|
| 192 |
+
continue
|
| 193 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 194 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
| 195 |
+
noise_pred, conditional_output = self.transformer(
|
| 196 |
+
model_config=model_config,
|
| 197 |
+
# Inputs of the condition (new feature)
|
| 198 |
+
condition_latents=condition_latents if use_condition else None,
|
| 199 |
+
condition_ids=condition_ids if use_condition else None,
|
| 200 |
+
condition_type_ids=condition_type_ids if use_condition else None, # the condition_type_ids is not used so far.
|
| 201 |
+
condition_types = condition_types if use_condition else None,
|
| 202 |
+
return_condition_latents = model_config.get("return_condition_latents",False),
|
| 203 |
+
# Inputs to the original transformer
|
| 204 |
+
hidden_states=latents,
|
| 205 |
+
timestep=timestep / 1000,
|
| 206 |
+
guidance=guidance,
|
| 207 |
+
pooled_projections=pooled_prompt_embeds,
|
| 208 |
+
encoder_hidden_states=prompt_embeds,
|
| 209 |
+
txt_ids=text_ids,
|
| 210 |
+
img_ids=latent_image_ids,
|
| 211 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 212 |
+
return_dict=False,
|
| 213 |
+
)
|
| 214 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 215 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
| 216 |
+
|
| 217 |
+
# prepare for callback
|
| 218 |
+
if callback_on_step_end is not None:
|
| 219 |
+
callback_kwargs = {}
|
| 220 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 221 |
+
callback_kwargs[k] = locals()[k]
|
| 222 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 223 |
+
|
| 224 |
+
latents = callback_outputs.pop("latents", latents)
|
| 225 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 226 |
+
|
| 227 |
+
# call the callback, if provided
|
| 228 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 229 |
+
progress_bar.update()
|
| 230 |
+
|
| 231 |
+
# 7 finish denoising process
|
| 232 |
+
if output_type == "latent":
|
| 233 |
+
image = latents
|
| 234 |
+
else:
|
| 235 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
| 236 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
| 237 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
| 238 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 239 |
+
|
| 240 |
+
# Offload all models
|
| 241 |
+
self.maybe_free_model_hooks()
|
| 242 |
+
|
| 243 |
+
if not return_dict:
|
| 244 |
+
return (image,conditional_output) if model_config.get("return_condition_latents",False) else (image,)
|
| 245 |
+
|
| 246 |
+
return FluxPipelineOutput(images=image)
|