|
|
from typing import Callable, List, Type |
|
|
import gymnasium as gym |
|
|
import numpy as np |
|
|
from mani_skill.envs.sapien_env import BaseEnv |
|
|
from mani_skill.utils import common, gym_utils |
|
|
import argparse |
|
|
import yaml |
|
|
import torch |
|
|
from collections import deque |
|
|
from PIL import Image |
|
|
import cv2 |
|
|
import imageio |
|
|
from functools import partial |
|
|
from torchvision.transforms.functional import center_crop |
|
|
|
|
|
def parse_args(args=None): |
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument("-e", "--env-id", type=str, default="PickCube-v1", help=f"Environment to run motion planning solver on. ") |
|
|
parser.add_argument("-o", "--obs-mode", type=str, default="rgb", help="Observation mode to use. Usually this is kept as 'none' as observations are not necesary to be stored, they can be replayed later via the mani_skill.trajectory.replay_trajectory script.") |
|
|
parser.add_argument("-n", "--num-traj", type=int, default=25, help="Number of trajectories to generate.") |
|
|
parser.add_argument("--only-count-success", action="store_true", help="If true, generates trajectories until num_traj of them are successful and only saves the successful trajectories/videos") |
|
|
parser.add_argument("--reward-mode", type=str) |
|
|
parser.add_argument("-b", "--sim-backend", type=str, default="auto", help="Which simulation backend to use. Can be 'auto', 'cpu', 'gpu'") |
|
|
parser.add_argument("--render-mode", type=str, default="rgb_array", help="can be 'sensors' or 'rgb_array' which only affect what is saved to videos") |
|
|
parser.add_argument("--vis", action="store_true", help="whether or not to open a GUI to visualize the solution live") |
|
|
parser.add_argument("--save-video", action="store_true", help="whether or not to save videos locally") |
|
|
parser.add_argument("--traj-name", type=str, help="The name of the trajectory .h5 file that will be created.") |
|
|
parser.add_argument("--shader", default="default", type=str, help="Change shader used for rendering. Default is 'default' which is very fast. Can also be 'rt' for ray tracing and generating photo-realistic renders. Can also be 'rt-fast' for a faster but lower quality ray-traced renderer") |
|
|
parser.add_argument("--record-dir", type=str, default="demos", help="where to save the recorded trajectories") |
|
|
parser.add_argument("--num-procs", type=int, default=1, help="Number of processes to use to help parallelize the trajectory replay process. This uses CPU multiprocessing and only works with the CPU simulation backend at the moment.") |
|
|
parser.add_argument("--random_seed", type=int, default=0, help="Random seed for the environment.") |
|
|
parser.add_argument("--pretrained_path", type=str, default=None, help="Path to the pretrained model") |
|
|
return parser.parse_args() |
|
|
|
|
|
task2lang = { |
|
|
"PegInsertionSide-v1": "Pick up a orange-white peg and insert the orange end into the box with a hole in it.", |
|
|
"PickCube-v1": "Grasp a red cube and move it to a target goal position.", |
|
|
"StackCube-v1": "Pick up a red cube and stack it on top of a green cube and let go of the cube without it falling.", |
|
|
"PlugCharger-v1": "Pick up one of the misplaced shapes on the board/kit and insert it into the correct empty slot.", |
|
|
"PushCube-v1": "Push and move a cube to a goal region in front of it." |
|
|
} |
|
|
|
|
|
import random |
|
|
import os |
|
|
|
|
|
args = parse_args() |
|
|
seed = args.random_seed |
|
|
random.seed(seed) |
|
|
os.environ['PYTHONHASHSEED'] = str(seed) |
|
|
np.random.seed(seed) |
|
|
torch.manual_seed(seed) |
|
|
torch.cuda.manual_seed(seed) |
|
|
torch.backends.cudnn.deterministic = True |
|
|
torch.backends.cudnn.benchmark = False |
|
|
|
|
|
from transformers import AutoModelForVision2Seq, AutoProcessor |
|
|
|
|
|
DATA_STAT = {'mean': [ 0.00263866, 0.01804881, -0.02151551, -0.00384866, 0.00500441, |
|
|
-0.00057146, -0.26013601], 'std': [0.06639539, 0.1246438 , 0.09675793, 0.03351422, 0.04930534, |
|
|
0.25787726, 0.96762997], 'max': [0.31303197, 0.77948809, 0.42906255, 0.20186238, 0.63990456, |
|
|
0.99999917, 1. ], 'min': [-0.31464151, -0.64183694, -0.62718982, -0.5888508 , -0.97813392, |
|
|
-0.99999928, -1. ], 'q01': [-0.18656027, -0.31995443, -0.24702898, -0.18005923, -0.2164692 , |
|
|
-0.82366071, -1. ], 'q99': [0.18384692, 0.45547636, 0.27452313, 0.03571117, 0.1188747 , |
|
|
0.85074112, 1. ]} |
|
|
|
|
|
MODEL_PATH = args.pretrained_path |
|
|
|
|
|
def make_policy(): |
|
|
device = torch.device('cuda') |
|
|
|
|
|
processor = AutoProcessor.from_pretrained(MODEL_PATH, trust_remote_code=True) |
|
|
vla = AutoModelForVision2Seq.from_pretrained( |
|
|
MODEL_PATH, |
|
|
attn_implementation="flash_attention_2", |
|
|
torch_dtype=torch.bfloat16, |
|
|
low_cpu_mem_usage=True, |
|
|
trust_remote_code=True |
|
|
).to(device) |
|
|
vla.norm_stats["maniskill"] = { |
|
|
"action": { |
|
|
"min": np.array(DATA_STAT["min"]), |
|
|
"max": np.array(DATA_STAT["max"]), |
|
|
"mean": np.array(DATA_STAT["mean"]), |
|
|
"std": np.array(DATA_STAT["std"]), |
|
|
"q01": np.array(DATA_STAT["q01"]), |
|
|
"q99": np.array(DATA_STAT["q99"]), |
|
|
} |
|
|
} |
|
|
|
|
|
vla = vla.eval() |
|
|
|
|
|
return vla, processor |
|
|
|
|
|
vla, processor = make_policy() |
|
|
success_counts = {} |
|
|
|
|
|
for env_id in task2lang.keys(): |
|
|
|
|
|
env = gym.make( |
|
|
env_id, |
|
|
obs_mode=args.obs_mode, |
|
|
control_mode="pd_ee_delta_pose", |
|
|
render_mode=args.render_mode, |
|
|
reward_mode="dense" if args.reward_mode is None else args.reward_mode, |
|
|
sensor_configs=dict(shader_pack=args.shader), |
|
|
human_render_camera_configs=dict(shader_pack=args.shader), |
|
|
viewer_camera_configs=dict(shader_pack=args.shader), |
|
|
sim_backend=args.sim_backend |
|
|
) |
|
|
|
|
|
MAX_EPISODE_STEPS = 400 |
|
|
total_episodes = args.num_traj |
|
|
success_count = 0 |
|
|
base_seed = 20241201 |
|
|
import tqdm |
|
|
|
|
|
for episode in tqdm.trange(total_episodes): |
|
|
obs_window = deque(maxlen=2) |
|
|
obs, _ = env.reset(seed = base_seed + episode) |
|
|
|
|
|
img = env.render().squeeze(0).detach().cpu().numpy() |
|
|
obs_window.append(img) |
|
|
|
|
|
global_steps = 0 |
|
|
video_frames = [] |
|
|
|
|
|
success_time = 0 |
|
|
done = False |
|
|
|
|
|
while global_steps < MAX_EPISODE_STEPS and not done: |
|
|
obs = obs_window[-1] |
|
|
image_arrs = [ |
|
|
obs_window[-1] |
|
|
] |
|
|
images = [Image.fromarray(arr) for arr in image_arrs] |
|
|
original_size = images[0].size |
|
|
crop_scale = 0.9 |
|
|
sqrt_crop_scale = crop_scale |
|
|
sqrt_crop_scale = np.sqrt(crop_scale) |
|
|
images = [ |
|
|
center_crop( |
|
|
img, output_size=( |
|
|
int(sqrt_crop_scale * img.size[1]), |
|
|
int(sqrt_crop_scale * img.size[0]) |
|
|
) |
|
|
) for img in images |
|
|
] |
|
|
images = [img.resize(original_size, Image.Resampling.BILINEAR) for img in images] |
|
|
|
|
|
instruction = task2lang[env_id].lower() |
|
|
prompt = f"In: What action should the robot take to {instruction}?\nOut:" |
|
|
inputs = processor(prompt, images).to("cuda:0", dtype=torch.bfloat16) |
|
|
actions = vla.predict_action(**inputs, unnorm_key="maniskill", do_sample=False)[None] |
|
|
for idx in range(actions.shape[0]): |
|
|
action = actions[idx] |
|
|
|
|
|
|
|
|
obs, reward, terminated, truncated, info = env.step(action) |
|
|
img = env.render().squeeze(0).detach().cpu().numpy() |
|
|
obs_window.append(img) |
|
|
video_frames.append(img) |
|
|
global_steps += 1 |
|
|
if terminated or truncated: |
|
|
assert "success" in info, sorted(info.keys()) |
|
|
if info['success']: |
|
|
success_count += 1 |
|
|
done = True |
|
|
break |
|
|
print(f"Trial {episode+1} finished, success: {info['success']}, steps: {global_steps}") |
|
|
success_counts[env_id] = success_count |
|
|
print(f"Task {env_id} finished, success: {success_count}/{total_episodes}") |
|
|
|
|
|
log_file = "results_ovla_all.log" |
|
|
with open(log_file, 'a') as f: |
|
|
f.write(f"{seed}:{success_counts}\n") |