added model
Browse files- all_results.json +12 -0
- config.json +46 -0
- eval_results.json +8 -0
- preprocessor_config.json +14 -0
- pytorch_model.bin +3 -0
- train.py +211 -0
- train_results.json +7 -0
- trainer_state.json +310 -0
- training_args.bin +3 -0
all_results.json
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 6.0,
|
| 3 |
+
"eval_accuracy": 0.9852222222222222,
|
| 4 |
+
"eval_loss": 0.05230661854147911,
|
| 5 |
+
"eval_runtime": 2.6574,
|
| 6 |
+
"eval_samples_per_second": 3386.794,
|
| 7 |
+
"eval_steps_per_second": 423.349,
|
| 8 |
+
"train_loss": 0.1922683648263396,
|
| 9 |
+
"train_runtime": 134.4457,
|
| 10 |
+
"train_samples_per_second": 2276.012,
|
| 11 |
+
"train_steps_per_second": 71.137
|
| 12 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"ResNetForImageClassification"
|
| 4 |
+
],
|
| 5 |
+
"depths": [
|
| 6 |
+
2,
|
| 7 |
+
2
|
| 8 |
+
],
|
| 9 |
+
"downsample_in_first_stage": false,
|
| 10 |
+
"embedding_size": 64,
|
| 11 |
+
"hidden_act": "relu",
|
| 12 |
+
"hidden_sizes": [
|
| 13 |
+
32,
|
| 14 |
+
64
|
| 15 |
+
],
|
| 16 |
+
"id2label": {
|
| 17 |
+
"0": "LABEL_0",
|
| 18 |
+
"1": "LABEL_1",
|
| 19 |
+
"2": "LABEL_2",
|
| 20 |
+
"3": "LABEL_3",
|
| 21 |
+
"4": "LABEL_4",
|
| 22 |
+
"5": "LABEL_5",
|
| 23 |
+
"6": "LABEL_6",
|
| 24 |
+
"7": "LABEL_7",
|
| 25 |
+
"8": "LABEL_8",
|
| 26 |
+
"9": "LABEL_9"
|
| 27 |
+
},
|
| 28 |
+
"label2id": {
|
| 29 |
+
"LABEL_0": 0,
|
| 30 |
+
"LABEL_1": 1,
|
| 31 |
+
"LABEL_2": 2,
|
| 32 |
+
"LABEL_3": 3,
|
| 33 |
+
"LABEL_4": 4,
|
| 34 |
+
"LABEL_5": 5,
|
| 35 |
+
"LABEL_6": 6,
|
| 36 |
+
"LABEL_7": 7,
|
| 37 |
+
"LABEL_8": 8,
|
| 38 |
+
"LABEL_9": 9
|
| 39 |
+
},
|
| 40 |
+
"layer_type": "basic",
|
| 41 |
+
"model_type": "resnet",
|
| 42 |
+
"num_channels": 1,
|
| 43 |
+
"problem_type": "single_label_classification",
|
| 44 |
+
"torch_dtype": "float32",
|
| 45 |
+
"transformers_version": "4.19.0.dev0"
|
| 46 |
+
}
|
eval_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 6.0,
|
| 3 |
+
"eval_accuracy": 0.9852222222222222,
|
| 4 |
+
"eval_loss": 0.05230661854147911,
|
| 5 |
+
"eval_runtime": 2.6574,
|
| 6 |
+
"eval_samples_per_second": 3386.794,
|
| 7 |
+
"eval_steps_per_second": 423.349
|
| 8 |
+
}
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"crop_pct": null,
|
| 3 |
+
"do_normalize": false,
|
| 4 |
+
"do_resize": false,
|
| 5 |
+
"feature_extractor_type": "ConvNextFeatureExtractor",
|
| 6 |
+
"image_mean": [
|
| 7 |
+
0.45
|
| 8 |
+
],
|
| 9 |
+
"image_std": [
|
| 10 |
+
0.22
|
| 11 |
+
],
|
| 12 |
+
"resample": 3,
|
| 13 |
+
"size": 224
|
| 14 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:72b3ed2e1f131afbe98687a782109fa539b77a1b60713d8be2cb09dab092db7f
|
| 3 |
+
size 763481
|
train.py
ADDED
|
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import sys
|
| 3 |
+
from dataclasses import dataclass, field
|
| 4 |
+
from typing import Optional
|
| 5 |
+
|
| 6 |
+
import datasets
|
| 7 |
+
import torch
|
| 8 |
+
import transformers
|
| 9 |
+
from torchinfo import summary
|
| 10 |
+
from torchvision.transforms import Compose, Normalize, ToTensor
|
| 11 |
+
from transformers import (
|
| 12 |
+
ConvNextFeatureExtractor,
|
| 13 |
+
HfArgumentParser,
|
| 14 |
+
ResNetConfig,
|
| 15 |
+
ResNetForImageClassification,
|
| 16 |
+
Trainer,
|
| 17 |
+
TrainingArguments,
|
| 18 |
+
)
|
| 19 |
+
from transformers.utils import check_min_version
|
| 20 |
+
from transformers.utils.versions import require_version
|
| 21 |
+
|
| 22 |
+
import numpy as np
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
@dataclass
|
| 26 |
+
class DataTrainingArguments:
|
| 27 |
+
"""
|
| 28 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
| 29 |
+
Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify
|
| 30 |
+
them on the command line.
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
train_val_split: Optional[float] = field(
|
| 34 |
+
default=0.15, metadata={"help": "Percent to split off of train for validation."}
|
| 35 |
+
)
|
| 36 |
+
max_train_samples: Optional[int] = field(
|
| 37 |
+
default=None,
|
| 38 |
+
metadata={
|
| 39 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
| 40 |
+
"value if set."
|
| 41 |
+
},
|
| 42 |
+
)
|
| 43 |
+
max_eval_samples: Optional[int] = field(
|
| 44 |
+
default=None,
|
| 45 |
+
metadata={
|
| 46 |
+
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
| 47 |
+
"value if set."
|
| 48 |
+
},
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def collate_fn(examples):
|
| 53 |
+
pixel_values = torch.stack([example["pixel_values"] for example in examples])
|
| 54 |
+
labels = torch.tensor([example["label"] for example in examples])
|
| 55 |
+
return {"pixel_values": pixel_values, "labels": labels}
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
| 59 |
+
check_min_version("4.19.0.dev0")
|
| 60 |
+
|
| 61 |
+
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")
|
| 62 |
+
|
| 63 |
+
logger = logging.getLogger(__name__)
|
| 64 |
+
|
| 65 |
+
def main():
|
| 66 |
+
parser = HfArgumentParser((DataTrainingArguments, TrainingArguments))
|
| 67 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
| 68 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
| 69 |
+
# let's parse it to get our arguments.
|
| 70 |
+
data_args, training_args = parser.parse_json_file(
|
| 71 |
+
json_file=os.path.abspath(sys.argv[1])
|
| 72 |
+
)
|
| 73 |
+
else:
|
| 74 |
+
data_args, training_args = parser.parse_args_into_dataclasses()
|
| 75 |
+
|
| 76 |
+
# Setup logging
|
| 77 |
+
logging.basicConfig(
|
| 78 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 79 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
| 80 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
log_level = training_args.get_process_log_level()
|
| 84 |
+
logger.setLevel(log_level)
|
| 85 |
+
transformers.utils.logging.set_verbosity(log_level)
|
| 86 |
+
transformers.utils.logging.enable_default_handler()
|
| 87 |
+
transformers.utils.logging.enable_explicit_format()
|
| 88 |
+
|
| 89 |
+
# Log on each process the small summary:
|
| 90 |
+
logger.warning(
|
| 91 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
| 92 |
+
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
dataset = datasets.load_dataset("mnist")
|
| 96 |
+
|
| 97 |
+
data_args.train_val_split = (
|
| 98 |
+
None if "validation" in dataset.keys() else data_args.train_val_split
|
| 99 |
+
)
|
| 100 |
+
if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0:
|
| 101 |
+
split = dataset["train"].train_test_split(data_args.train_val_split)
|
| 102 |
+
dataset["train"] = split["train"]
|
| 103 |
+
dataset["validation"] = split["test"]
|
| 104 |
+
|
| 105 |
+
feature_extractor = ConvNextFeatureExtractor(
|
| 106 |
+
do_resize=False, do_normalize=False, image_mean=[0.45], image_std=[0.22]
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
config = ResNetConfig(
|
| 110 |
+
num_channels=1,
|
| 111 |
+
layer_type="basic",
|
| 112 |
+
depths=[2, 2],
|
| 113 |
+
hidden_sizes=[32, 64],
|
| 114 |
+
num_labels=10,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
model = ResNetForImageClassification(config)
|
| 118 |
+
|
| 119 |
+
# Define torchvision transforms to be applied to each image.
|
| 120 |
+
normalize = Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
|
| 121 |
+
_transforms = Compose([ToTensor(), normalize])
|
| 122 |
+
|
| 123 |
+
def transforms(example_batch):
|
| 124 |
+
"""Apply _train_transforms across a batch."""
|
| 125 |
+
# black and white
|
| 126 |
+
example_batch["pixel_values"] = [_transforms(pil_img.convert("L")) for pil_img in example_batch["image"]]
|
| 127 |
+
return example_batch
|
| 128 |
+
|
| 129 |
+
# Load the accuracy metric from the datasets package
|
| 130 |
+
metric = datasets.load_metric("accuracy")
|
| 131 |
+
|
| 132 |
+
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
|
| 133 |
+
# predictions and label_ids field) and has to return a dictionary string to float.
|
| 134 |
+
def compute_metrics(p):
|
| 135 |
+
"""Computes accuracy on a batch of predictions"""
|
| 136 |
+
|
| 137 |
+
accuracy = metric.compute(predictions=np.argmax(p.predictions, axis=1), references=p.label_ids)
|
| 138 |
+
return accuracy
|
| 139 |
+
|
| 140 |
+
if training_args.do_train:
|
| 141 |
+
if data_args.max_train_samples is not None:
|
| 142 |
+
dataset["train"] = (
|
| 143 |
+
dataset["train"]
|
| 144 |
+
.shuffle(seed=training_args.seed)
|
| 145 |
+
.select(range(data_args.max_train_samples))
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
logger.info("Setting train transform")
|
| 149 |
+
# Set the training transforms
|
| 150 |
+
dataset["train"].set_transform(transforms)
|
| 151 |
+
|
| 152 |
+
if training_args.do_eval:
|
| 153 |
+
if "validation" not in dataset:
|
| 154 |
+
raise ValueError("--do_eval requires a validation dataset")
|
| 155 |
+
if data_args.max_eval_samples is not None:
|
| 156 |
+
dataset["validation"] = (
|
| 157 |
+
dataset["validation"]
|
| 158 |
+
.shuffle(seed=training_args.seed)
|
| 159 |
+
.select(range(data_args.max_eval_samples))
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
logger.info("Setting validation transform")
|
| 163 |
+
# Set the validation transforms
|
| 164 |
+
dataset["validation"].set_transform(transforms)
|
| 165 |
+
|
| 166 |
+
from transformers import trainer_utils
|
| 167 |
+
|
| 168 |
+
print(dataset)
|
| 169 |
+
|
| 170 |
+
training_args = transformers.TrainingArguments(
|
| 171 |
+
output_dir=training_args.output_dir,
|
| 172 |
+
do_eval=training_args.do_eval,
|
| 173 |
+
do_train=training_args.do_train,
|
| 174 |
+
logging_steps = 500,
|
| 175 |
+
eval_steps = 500,
|
| 176 |
+
save_steps= 500,
|
| 177 |
+
remove_unused_columns = False, # we need to pass the `label` and `image`
|
| 178 |
+
per_device_train_batch_size = 32,
|
| 179 |
+
save_total_limit = 2,
|
| 180 |
+
evaluation_strategy = "steps",
|
| 181 |
+
num_train_epochs = 6,
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
logger.info(f"Training/evaluation parameters {training_args}")
|
| 185 |
+
|
| 186 |
+
trainer = Trainer(
|
| 187 |
+
model=model,
|
| 188 |
+
args=training_args,
|
| 189 |
+
train_dataset=dataset["train"] if training_args.do_train else None,
|
| 190 |
+
eval_dataset=dataset["validation"] if training_args.do_eval else None,
|
| 191 |
+
compute_metrics=compute_metrics,
|
| 192 |
+
tokenizer=feature_extractor,
|
| 193 |
+
data_collator=collate_fn,
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
# Training
|
| 197 |
+
if training_args.do_train:
|
| 198 |
+
train_result = trainer.train()
|
| 199 |
+
trainer.save_model()
|
| 200 |
+
trainer.log_metrics("train", train_result.metrics)
|
| 201 |
+
trainer.save_metrics("train", train_result.metrics)
|
| 202 |
+
trainer.save_state()
|
| 203 |
+
|
| 204 |
+
# Evaluation
|
| 205 |
+
if training_args.do_eval:
|
| 206 |
+
metrics = trainer.evaluate()
|
| 207 |
+
trainer.log_metrics("eval", metrics)
|
| 208 |
+
trainer.save_metrics("eval", metrics)
|
| 209 |
+
|
| 210 |
+
if __name__ == "__main__":
|
| 211 |
+
main()
|
train_results.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 6.0,
|
| 3 |
+
"train_loss": 0.1922683648263396,
|
| 4 |
+
"train_runtime": 134.4457,
|
| 5 |
+
"train_samples_per_second": 2276.012,
|
| 6 |
+
"train_steps_per_second": 71.137
|
| 7 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 6.0,
|
| 5 |
+
"global_step": 9564,
|
| 6 |
+
"is_hyper_param_search": false,
|
| 7 |
+
"is_local_process_zero": true,
|
| 8 |
+
"is_world_process_zero": true,
|
| 9 |
+
"log_history": [
|
| 10 |
+
{
|
| 11 |
+
"epoch": 0.31,
|
| 12 |
+
"learning_rate": 4.7386030949393564e-05,
|
| 13 |
+
"loss": 1.4207,
|
| 14 |
+
"step": 500
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"epoch": 0.31,
|
| 18 |
+
"eval_accuracy": 0.9008888888888889,
|
| 19 |
+
"eval_loss": 0.7066789269447327,
|
| 20 |
+
"eval_runtime": 2.6965,
|
| 21 |
+
"eval_samples_per_second": 3337.621,
|
| 22 |
+
"eval_steps_per_second": 417.203,
|
| 23 |
+
"step": 500
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"epoch": 0.63,
|
| 27 |
+
"learning_rate": 4.477206189878712e-05,
|
| 28 |
+
"loss": 0.5086,
|
| 29 |
+
"step": 1000
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"epoch": 0.63,
|
| 33 |
+
"eval_accuracy": 0.9516666666666667,
|
| 34 |
+
"eval_loss": 0.3055577874183655,
|
| 35 |
+
"eval_runtime": 2.6576,
|
| 36 |
+
"eval_samples_per_second": 3386.509,
|
| 37 |
+
"eval_steps_per_second": 423.314,
|
| 38 |
+
"step": 1000
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 0.94,
|
| 42 |
+
"learning_rate": 4.215809284818068e-05,
|
| 43 |
+
"loss": 0.2731,
|
| 44 |
+
"step": 1500
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.94,
|
| 48 |
+
"eval_accuracy": 0.9648888888888889,
|
| 49 |
+
"eval_loss": 0.18555375933647156,
|
| 50 |
+
"eval_runtime": 2.6597,
|
| 51 |
+
"eval_samples_per_second": 3383.793,
|
| 52 |
+
"eval_steps_per_second": 422.974,
|
| 53 |
+
"step": 1500
|
| 54 |
+
},
|
| 55 |
+
{
|
| 56 |
+
"epoch": 1.25,
|
| 57 |
+
"learning_rate": 3.954412379757424e-05,
|
| 58 |
+
"loss": 0.1976,
|
| 59 |
+
"step": 2000
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"epoch": 1.25,
|
| 63 |
+
"eval_accuracy": 0.9701111111111111,
|
| 64 |
+
"eval_loss": 0.14159560203552246,
|
| 65 |
+
"eval_runtime": 2.715,
|
| 66 |
+
"eval_samples_per_second": 3314.86,
|
| 67 |
+
"eval_steps_per_second": 414.357,
|
| 68 |
+
"step": 2000
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"epoch": 1.57,
|
| 72 |
+
"learning_rate": 3.69301547469678e-05,
|
| 73 |
+
"loss": 0.1565,
|
| 74 |
+
"step": 2500
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"epoch": 1.57,
|
| 78 |
+
"eval_accuracy": 0.9738888888888889,
|
| 79 |
+
"eval_loss": 0.11081045866012573,
|
| 80 |
+
"eval_runtime": 2.6963,
|
| 81 |
+
"eval_samples_per_second": 3337.905,
|
| 82 |
+
"eval_steps_per_second": 417.238,
|
| 83 |
+
"step": 2500
|
| 84 |
+
},
|
| 85 |
+
{
|
| 86 |
+
"epoch": 1.88,
|
| 87 |
+
"learning_rate": 3.431618569636136e-05,
|
| 88 |
+
"loss": 0.128,
|
| 89 |
+
"step": 3000
|
| 90 |
+
},
|
| 91 |
+
{
|
| 92 |
+
"epoch": 1.88,
|
| 93 |
+
"eval_accuracy": 0.976,
|
| 94 |
+
"eval_loss": 0.09747562557458878,
|
| 95 |
+
"eval_runtime": 2.6961,
|
| 96 |
+
"eval_samples_per_second": 3338.209,
|
| 97 |
+
"eval_steps_per_second": 417.276,
|
| 98 |
+
"step": 3000
|
| 99 |
+
},
|
| 100 |
+
{
|
| 101 |
+
"epoch": 2.2,
|
| 102 |
+
"learning_rate": 3.170221664575492e-05,
|
| 103 |
+
"loss": 0.1133,
|
| 104 |
+
"step": 3500
|
| 105 |
+
},
|
| 106 |
+
{
|
| 107 |
+
"epoch": 2.2,
|
| 108 |
+
"eval_accuracy": 0.9788888888888889,
|
| 109 |
+
"eval_loss": 0.08474569022655487,
|
| 110 |
+
"eval_runtime": 2.7245,
|
| 111 |
+
"eval_samples_per_second": 3303.375,
|
| 112 |
+
"eval_steps_per_second": 412.922,
|
| 113 |
+
"step": 3500
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"epoch": 2.51,
|
| 117 |
+
"learning_rate": 2.9088247595148475e-05,
|
| 118 |
+
"loss": 0.1031,
|
| 119 |
+
"step": 4000
|
| 120 |
+
},
|
| 121 |
+
{
|
| 122 |
+
"epoch": 2.51,
|
| 123 |
+
"eval_accuracy": 0.9804444444444445,
|
| 124 |
+
"eval_loss": 0.07724875211715698,
|
| 125 |
+
"eval_runtime": 2.6363,
|
| 126 |
+
"eval_samples_per_second": 3413.847,
|
| 127 |
+
"eval_steps_per_second": 426.731,
|
| 128 |
+
"step": 4000
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"epoch": 2.82,
|
| 132 |
+
"learning_rate": 2.6474278544542037e-05,
|
| 133 |
+
"loss": 0.09,
|
| 134 |
+
"step": 4500
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
"epoch": 2.82,
|
| 138 |
+
"eval_accuracy": 0.9818888888888889,
|
| 139 |
+
"eval_loss": 0.0697416290640831,
|
| 140 |
+
"eval_runtime": 2.6295,
|
| 141 |
+
"eval_samples_per_second": 3422.689,
|
| 142 |
+
"eval_steps_per_second": 427.836,
|
| 143 |
+
"step": 4500
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"epoch": 3.14,
|
| 147 |
+
"learning_rate": 2.386030949393559e-05,
|
| 148 |
+
"loss": 0.0871,
|
| 149 |
+
"step": 5000
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"epoch": 3.14,
|
| 153 |
+
"eval_accuracy": 0.9815555555555555,
|
| 154 |
+
"eval_loss": 0.066066212952137,
|
| 155 |
+
"eval_runtime": 2.6946,
|
| 156 |
+
"eval_samples_per_second": 3340.06,
|
| 157 |
+
"eval_steps_per_second": 417.507,
|
| 158 |
+
"step": 5000
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"epoch": 3.45,
|
| 162 |
+
"learning_rate": 2.1246340443329153e-05,
|
| 163 |
+
"loss": 0.0733,
|
| 164 |
+
"step": 5500
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"epoch": 3.45,
|
| 168 |
+
"eval_accuracy": 0.9822222222222222,
|
| 169 |
+
"eval_loss": 0.06342040002346039,
|
| 170 |
+
"eval_runtime": 2.6897,
|
| 171 |
+
"eval_samples_per_second": 3346.09,
|
| 172 |
+
"eval_steps_per_second": 418.261,
|
| 173 |
+
"step": 5500
|
| 174 |
+
},
|
| 175 |
+
{
|
| 176 |
+
"epoch": 3.76,
|
| 177 |
+
"learning_rate": 1.863237139272271e-05,
|
| 178 |
+
"loss": 0.0761,
|
| 179 |
+
"step": 6000
|
| 180 |
+
},
|
| 181 |
+
{
|
| 182 |
+
"epoch": 3.76,
|
| 183 |
+
"eval_accuracy": 0.983,
|
| 184 |
+
"eval_loss": 0.06072380393743515,
|
| 185 |
+
"eval_runtime": 2.6938,
|
| 186 |
+
"eval_samples_per_second": 3340.98,
|
| 187 |
+
"eval_steps_per_second": 417.623,
|
| 188 |
+
"step": 6000
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"epoch": 4.08,
|
| 192 |
+
"learning_rate": 1.601840234211627e-05,
|
| 193 |
+
"loss": 0.0739,
|
| 194 |
+
"step": 6500
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"epoch": 4.08,
|
| 198 |
+
"eval_accuracy": 0.9832222222222222,
|
| 199 |
+
"eval_loss": 0.05795769765973091,
|
| 200 |
+
"eval_runtime": 2.6767,
|
| 201 |
+
"eval_samples_per_second": 3362.391,
|
| 202 |
+
"eval_steps_per_second": 420.299,
|
| 203 |
+
"step": 6500
|
| 204 |
+
},
|
| 205 |
+
{
|
| 206 |
+
"epoch": 4.39,
|
| 207 |
+
"learning_rate": 1.340443329150983e-05,
|
| 208 |
+
"loss": 0.0643,
|
| 209 |
+
"step": 7000
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"epoch": 4.39,
|
| 213 |
+
"eval_accuracy": 0.9844444444444445,
|
| 214 |
+
"eval_loss": 0.05685265362262726,
|
| 215 |
+
"eval_runtime": 2.6876,
|
| 216 |
+
"eval_samples_per_second": 3348.672,
|
| 217 |
+
"eval_steps_per_second": 418.584,
|
| 218 |
+
"step": 7000
|
| 219 |
+
},
|
| 220 |
+
{
|
| 221 |
+
"epoch": 4.71,
|
| 222 |
+
"learning_rate": 1.0790464240903388e-05,
|
| 223 |
+
"loss": 0.0678,
|
| 224 |
+
"step": 7500
|
| 225 |
+
},
|
| 226 |
+
{
|
| 227 |
+
"epoch": 4.71,
|
| 228 |
+
"eval_accuracy": 0.984,
|
| 229 |
+
"eval_loss": 0.05617769435048103,
|
| 230 |
+
"eval_runtime": 2.6484,
|
| 231 |
+
"eval_samples_per_second": 3398.278,
|
| 232 |
+
"eval_steps_per_second": 424.785,
|
| 233 |
+
"step": 7500
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"epoch": 5.02,
|
| 237 |
+
"learning_rate": 8.176495190296946e-06,
|
| 238 |
+
"loss": 0.0617,
|
| 239 |
+
"step": 8000
|
| 240 |
+
},
|
| 241 |
+
{
|
| 242 |
+
"epoch": 5.02,
|
| 243 |
+
"eval_accuracy": 0.9853333333333333,
|
| 244 |
+
"eval_loss": 0.053985536098480225,
|
| 245 |
+
"eval_runtime": 2.672,
|
| 246 |
+
"eval_samples_per_second": 3368.244,
|
| 247 |
+
"eval_steps_per_second": 421.03,
|
| 248 |
+
"step": 8000
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"epoch": 5.33,
|
| 252 |
+
"learning_rate": 5.562526139690506e-06,
|
| 253 |
+
"loss": 0.0571,
|
| 254 |
+
"step": 8500
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"epoch": 5.33,
|
| 258 |
+
"eval_accuracy": 0.9847777777777778,
|
| 259 |
+
"eval_loss": 0.05352585390210152,
|
| 260 |
+
"eval_runtime": 2.7082,
|
| 261 |
+
"eval_samples_per_second": 3323.274,
|
| 262 |
+
"eval_steps_per_second": 415.409,
|
| 263 |
+
"step": 8500
|
| 264 |
+
},
|
| 265 |
+
{
|
| 266 |
+
"epoch": 5.65,
|
| 267 |
+
"learning_rate": 2.9485570890840656e-06,
|
| 268 |
+
"loss": 0.0608,
|
| 269 |
+
"step": 9000
|
| 270 |
+
},
|
| 271 |
+
{
|
| 272 |
+
"epoch": 5.65,
|
| 273 |
+
"eval_accuracy": 0.9851111111111112,
|
| 274 |
+
"eval_loss": 0.053133774548769,
|
| 275 |
+
"eval_runtime": 2.6753,
|
| 276 |
+
"eval_samples_per_second": 3364.134,
|
| 277 |
+
"eval_steps_per_second": 420.517,
|
| 278 |
+
"step": 9000
|
| 279 |
+
},
|
| 280 |
+
{
|
| 281 |
+
"epoch": 5.96,
|
| 282 |
+
"learning_rate": 3.345880384776244e-07,
|
| 283 |
+
"loss": 0.0571,
|
| 284 |
+
"step": 9500
|
| 285 |
+
},
|
| 286 |
+
{
|
| 287 |
+
"epoch": 5.96,
|
| 288 |
+
"eval_accuracy": 0.9847777777777778,
|
| 289 |
+
"eval_loss": 0.05344167724251747,
|
| 290 |
+
"eval_runtime": 2.6425,
|
| 291 |
+
"eval_samples_per_second": 3405.863,
|
| 292 |
+
"eval_steps_per_second": 425.733,
|
| 293 |
+
"step": 9500
|
| 294 |
+
},
|
| 295 |
+
{
|
| 296 |
+
"epoch": 6.0,
|
| 297 |
+
"step": 9564,
|
| 298 |
+
"total_flos": 264960533376000.0,
|
| 299 |
+
"train_loss": 0.1922683648263396,
|
| 300 |
+
"train_runtime": 134.4457,
|
| 301 |
+
"train_samples_per_second": 2276.012,
|
| 302 |
+
"train_steps_per_second": 71.137
|
| 303 |
+
}
|
| 304 |
+
],
|
| 305 |
+
"max_steps": 9564,
|
| 306 |
+
"num_train_epochs": 6,
|
| 307 |
+
"total_flos": 264960533376000.0,
|
| 308 |
+
"trial_name": null,
|
| 309 |
+
"trial_params": null
|
| 310 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aa4e95a4ea032aa40c0216647955b0d7d2e98a98aba8f2db221e4606d6d0d474
|
| 3 |
+
size 3055
|