forge-coder-v1.21.11 / handler.py
hwding's picture
Upload handler.py with huggingface_hub
b9bae32 verified
from typing import Dict, Any, List
import torch
import time
import uuid
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from peft import PeftModel
DEFAULT_SYSTEM_PROMPT = "You are an expert Minecraft Forge mod developer for version 1.21.11. Write clean, efficient, and well-structured Java code."
class EndpointHandler:
def __init__(self, path: str = ""):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model_id = "hwding/forge-coder-v1.21.11"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
)
base_model_id = "deepseek-ai/deepseek-coder-6.7b-instruct"
self.tokenizer = AutoTokenizer.from_pretrained(path)
self.model = AutoModelForCausalLM.from_pretrained(
base_model_id,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True,
)
self.model = PeftModel.from_pretrained(self.model, path)
self.model.eval()
def _format_messages(self, messages: List[Dict[str, str]]) -> str:
prompt_parts = []
has_system = False
for msg in messages:
role = msg.get("role", "")
content = msg.get("content", "")
if role == "system":
prompt_parts.append(f"### System:\n{content}")
has_system = True
elif role == "user":
prompt_parts.append(f"### User:\n{content}")
elif role == "assistant":
prompt_parts.append(f"### Assistant:\n{content}")
if not has_system:
prompt_parts.insert(0, f"### System:\n{DEFAULT_SYSTEM_PROMPT}")
prompt_parts.append("### Assistant:\n")
return "\n\n".join(prompt_parts)
def _generate(self, prompt: str, max_new_tokens: int, temperature: float, top_p: float) -> str:
input_ids = self.tokenizer(prompt, return_tensors="pt").to(self.device)
with torch.no_grad():
outputs = self.model.generate(
**input_ids,
max_new_tokens=max_new_tokens,
temperature=temperature if temperature > 0 else 1.0,
top_p=top_p,
do_sample=temperature > 0,
pad_token_id=self.tokenizer.eos_token_id,
)
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
if "### Assistant:" in generated_text:
generated_text = generated_text.split("### Assistant:")[-1].strip()
return generated_text
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
messages = data.get("messages")
if messages:
return self._handle_openai_format(data)
return self._handle_simple_format(data)
def _handle_openai_format(self, data: Dict[str, Any]) -> Dict[str, Any]:
messages = data.get("messages", [])
max_tokens = data.get("max_tokens", 512)
temperature = data.get("temperature", 0.7)
top_p = data.get("top_p", 0.95)
prompt = self._format_messages(messages)
generated_text = self._generate(prompt, max_tokens, temperature, top_p)
prompt_tokens = len(self.tokenizer.encode(prompt))
completion_tokens = len(self.tokenizer.encode(generated_text))
return {
"id": f"chatcmpl-{uuid.uuid4().hex[:8]}",
"object": "chat.completion",
"created": int(time.time()),
"model": self.model_id,
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": generated_text,
},
"finish_reason": "stop",
}],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
}
}
def _handle_simple_format(self, data: Dict[str, Any]) -> Dict[str, Any]:
inputs = data.get("inputs", "")
parameters = data.get("parameters", {})
max_new_tokens = parameters.get("max_new_tokens", 512)
temperature = parameters.get("temperature", 0.7)
top_p = parameters.get("top_p", 0.95)
if not inputs.startswith("### System:"):
prompt = f"### System:\n{DEFAULT_SYSTEM_PROMPT}\n\n### User:\n{inputs}\n\n### Assistant:\n"
else:
prompt = inputs
generated_text = self._generate(prompt, max_new_tokens, temperature, top_p)
return {"generated_text": generated_text}