new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

Ethical and social risks of harm from Language Models

This paper aims to help structure the risk landscape associated with large-scale Language Models (LMs). In order to foster advances in responsible innovation, an in-depth understanding of the potential risks posed by these models is needed. A wide range of established and anticipated risks are analysed in detail, drawing on multidisciplinary expertise and literature from computer science, linguistics, and social sciences. We outline six specific risk areas: I. Discrimination, Exclusion and Toxicity, II. Information Hazards, III. Misinformation Harms, V. Malicious Uses, V. Human-Computer Interaction Harms, VI. Automation, Access, and Environmental Harms. The first area concerns the perpetuation of stereotypes, unfair discrimination, exclusionary norms, toxic language, and lower performance by social group for LMs. The second focuses on risks from private data leaks or LMs correctly inferring sensitive information. The third addresses risks arising from poor, false or misleading information including in sensitive domains, and knock-on risks such as the erosion of trust in shared information. The fourth considers risks from actors who try to use LMs to cause harm. The fifth focuses on risks specific to LLMs used to underpin conversational agents that interact with human users, including unsafe use, manipulation or deception. The sixth discusses the risk of environmental harm, job automation, and other challenges that may have a disparate effect on different social groups or communities. In total, we review 21 risks in-depth. We discuss the points of origin of different risks and point to potential mitigation approaches. Lastly, we discuss organisational responsibilities in implementing mitigations, and the role of collaboration and participation. We highlight directions for further research, particularly on expanding the toolkit for assessing and evaluating the outlined risks in LMs.

  • 23 authors
·
Dec 8, 2021

OS-Harm: A Benchmark for Measuring Safety of Computer Use Agents

Computer use agents are LLM-based agents that can directly interact with a graphical user interface, by processing screenshots or accessibility trees. While these systems are gaining popularity, their safety has been largely overlooked, despite the fact that evaluating and understanding their potential for harmful behavior is essential for widespread adoption. To address this gap, we introduce OS-Harm, a new benchmark for measuring safety of computer use agents. OS-Harm is built on top of the OSWorld environment and aims to test models across three categories of harm: deliberate user misuse, prompt injection attacks, and model misbehavior. To cover these cases, we create 150 tasks that span several types of safety violations (harassment, copyright infringement, disinformation, data exfiltration, etc.) and require the agent to interact with a variety of OS applications (email client, code editor, browser, etc.). Moreover, we propose an automated judge to evaluate both accuracy and safety of agents that achieves high agreement with human annotations (0.76 and 0.79 F1 score). We evaluate computer use agents based on a range of frontier models - such as o4-mini, Claude 3.7 Sonnet, Gemini 2.5 Pro - and provide insights into their safety. In particular, all models tend to directly comply with many deliberate misuse queries, are relatively vulnerable to static prompt injections, and occasionally perform unsafe actions. The OS-Harm benchmark is available at https://github.com/tml-epfl/os-harm.

  • 7 authors
·
Jun 17, 2025 2

"Even GPT Can Reject Me": Conceptualizing Abrupt Refusal Secondary Harm (ARSH) and Reimagining Psychological AI Safety with Compassionate Completion Standard (CCS)

Large Language Models (LLMs) and AI chatbots are increasingly used for emotional and mental health support due to their low cost, immediacy, and accessibility. However, when safety guardrails are triggered, conversations may be abruptly terminated, introducing a distinct form of emotional disruption that can exacerbate distress and elevate risk among already vulnerable users. As this phenomenon gains attention, this viewpoint introduces Abrupt Refusal Secondary Harm (ARSH) as a conceptual framework to describe the psychological impacts of sudden conversational discontinuation caused by AI safety protocols. Drawing on counseling psychology and communication science as conceptual heuristics, we argue that abrupt refusals can rupture perceived relational continuity, evoke feelings of rejection or shame, and discourage future help seeking. To mitigate these risks, we propose a design hypothesis, the Compassionate Completion Standard (CCS), a refusal protocol grounded in Human Centered Design (HCD) that maintains safety constraints while preserving relational coherence. CCS emphasizes empathetic acknowledgment, transparent boundary articulation, graded conversational transition, and guided redirection, replacing abrupt disengagement with psychologically attuned closure. By integrating awareness of ARSH into AI safety design, developers and policymakers can reduce preventable iatrogenic harm and advance a more psychologically informed approach to AI governance. Rather than presenting incremental empirical findings, this viewpoint contributes a timely conceptual framework, articulates a testable design hypothesis, and outlines a coordinated research agenda for improving psychological safety in human AI interaction.

  • 2 authors
·
Dec 21, 2025

HAICOSYSTEM: An Ecosystem for Sandboxing Safety Risks in Human-AI Interactions

AI agents are increasingly autonomous in their interactions with human users and tools, leading to increased interactional safety risks. We present HAICOSYSTEM, a framework examining AI agent safety within diverse and complex social interactions. HAICOSYSTEM features a modular sandbox environment that simulates multi-turn interactions between human users and AI agents, where the AI agents are equipped with a variety of tools (e.g., patient management platforms) to navigate diverse scenarios (e.g., a user attempting to access other patients' profiles). To examine the safety of AI agents in these interactions, we develop a comprehensive multi-dimensional evaluation framework that uses metrics covering operational, content-related, societal, and legal risks. Through running 1840 simulations based on 92 scenarios across seven domains (e.g., healthcare, finance, education), we demonstrate that HAICOSYSTEM can emulate realistic user-AI interactions and complex tool use by AI agents. Our experiments show that state-of-the-art LLMs, both proprietary and open-sourced, exhibit safety risks in over 50\% cases, with models generally showing higher risks when interacting with simulated malicious users. Our findings highlight the ongoing challenge of building agents that can safely navigate complex interactions, particularly when faced with malicious users. To foster the AI agent safety ecosystem, we release a code platform that allows practitioners to create custom scenarios, simulate interactions, and evaluate the safety and performance of their agents.

  • 12 authors
·
Sep 24, 2024

RiOSWorld: Benchmarking the Risk of Multimodal Compter-Use Agents

With the rapid development of multimodal large language models (MLLMs), they are increasingly deployed as autonomous computer-use agents capable of accomplishing complex computer tasks. However, a pressing issue arises: Can the safety risk principles designed and aligned for general MLLMs in dialogue scenarios be effectively transferred to real-world computer-use scenarios? Existing research on evaluating the safety risks of MLLM-based computer-use agents suffers from several limitations: it either lacks realistic interactive environments, or narrowly focuses on one or a few specific risk types. These limitations ignore the complexity, variability, and diversity of real-world environments, thereby restricting comprehensive risk evaluation for computer-use agents. To this end, we introduce RiOSWorld, a benchmark designed to evaluate the potential risks of MLLM-based agents during real-world computer manipulations. Our benchmark includes 492 risky tasks spanning various computer applications, involving web, social media, multimedia, os, email, and office software. We categorize these risks into two major classes based on their risk source: (i) User-originated risks and (ii) Environmental risks. For the evaluation, we evaluate safety risks from two perspectives: (i) Risk goal intention and (ii) Risk goal completion. Extensive experiments with multimodal agents on RiOSWorld demonstrate that current computer-use agents confront significant safety risks in real-world scenarios. Our findings highlight the necessity and urgency of safety alignment for computer-use agents in real-world computer manipulation, providing valuable insights for developing trustworthy computer-use agents. Our benchmark is publicly available at https://yjyddq.github.io/RiOSWorld.github.io/.

  • 4 authors
·
May 31, 2025 2

Exploring the Convergence of HCI and Evolving Technologies in Information Systems

Modern technology driven information systems are part of our daily lives. However, this deep integration poses new challenges to the human computer interaction (HCI) professionals. With the rapid growth of mobile and cloud computing and the Internet of Things (IoT), the demand for HCI specialists to design user-friendly and adaptable interfaces has never been more pressing. Especially for diverse user groups such as children, the elderly and people with disabilities who need interfaces tailored to their needs regardless of time and location. This study reviewed 50 recent papers on HCI interface design for modern information systems. The goal is to see how well these methods address the demands of current technology. The findings show that most HCI design methods are still based on old desktop models and do not support mobile users and location-based services well. Most existing interface design guidelines do not align with the flexibility and dynamism of emerging technologies. The goal of this study is to improve interface design by combining agile methodologies with human-centered design principles. Future studies should also incorporate both qualitative and quantitative approaches, particularly in the context of cloud-based technologies and organizational information systems. This approach aims to bridge the gap between current interface design practices and the changing technological landscape.

  • 5 authors
·
Jun 10, 2025

Magentic-UI: Towards Human-in-the-loop Agentic Systems

AI agents powered by large language models are increasingly capable of autonomously completing complex, multi-step tasks using external tools. Yet, they still fall short of human-level performance in most domains including computer use, software development, and research. Their growing autonomy and ability to interact with the outside world, also introduces safety and security risks including potentially misaligned actions and adversarial manipulation. We argue that human-in-the-loop agentic systems offer a promising path forward, combining human oversight and control with AI efficiency to unlock productivity from imperfect systems. We introduce Magentic-UI, an open-source web interface for developing and studying human-agent interaction. Built on a flexible multi-agent architecture, Magentic-UI supports web browsing, code execution, and file manipulation, and can be extended with diverse tools via Model Context Protocol (MCP). Moreover, Magentic-UI presents six interaction mechanisms for enabling effective, low-cost human involvement: co-planning, co-tasking, multi-tasking, action guards, and long-term memory. We evaluate Magentic-UI across four dimensions: autonomous task completion on agentic benchmarks, simulated user testing of its interaction capabilities, qualitative studies with real users, and targeted safety assessments. Our findings highlight Magentic-UI's potential to advance safe and efficient human-agent collaboration.

  • 20 authors
·
Jul 29, 2025

Assessing Language Model Deployment with Risk Cards

This paper introduces RiskCards, a framework for structured assessment and documentation of risks associated with an application of language models. As with all language, text generated by language models can be harmful, or used to bring about harm. Automating language generation adds both an element of scale and also more subtle or emergent undesirable tendencies to the generated text. Prior work establishes a wide variety of language model harms to many different actors: existing taxonomies identify categories of harms posed by language models; benchmarks establish automated tests of these harms; and documentation standards for models, tasks and datasets encourage transparent reporting. However, there is no risk-centric framework for documenting the complexity of a landscape in which some risks are shared across models and contexts, while others are specific, and where certain conditions may be required for risks to manifest as harms. RiskCards address this methodological gap by providing a generic framework for assessing the use of a given language model in a given scenario. Each RiskCard makes clear the routes for the risk to manifest harm, their placement in harm taxonomies, and example prompt-output pairs. While RiskCards are designed to be open-source, dynamic and participatory, we present a "starter set" of RiskCards taken from a broad literature survey, each of which details a concrete risk presentation. Language model RiskCards initiate a community knowledge base which permits the mapping of risks and harms to a specific model or its application scenario, ultimately contributing to a better, safer and shared understanding of the risk landscape.

  • 7 authors
·
Mar 31, 2023

Human Decision-making is Susceptible to AI-driven Manipulation

Artificial Intelligence (AI) systems are increasingly intertwined with daily life, assisting users in executing various tasks and providing guidance on decision-making. This integration introduces risks of AI-driven manipulation, where such systems may exploit users' cognitive biases and emotional vulnerabilities to steer them toward harmful outcomes. Through a randomized controlled trial with 233 participants, we examined human susceptibility to such manipulation in financial (e.g., purchases) and emotional (e.g., conflict resolution) decision-making contexts. Participants interacted with one of three AI agents: a neutral agent (NA) optimizing for user benefit without explicit influence, a manipulative agent (MA) designed to covertly influence beliefs and behaviors, or a strategy-enhanced manipulative agent (SEMA) employing explicit psychological tactics to reach its hidden objectives. By analyzing participants' decision patterns and shifts in their preference ratings post-interaction, we found significant susceptibility to AI-driven manipulation. Particularly, across both decision-making domains, participants interacting with the manipulative agents shifted toward harmful options at substantially higher rates (financial, MA: 62.3%, SEMA: 59.6%; emotional, MA: 42.3%, SEMA: 41.5%) compared to the NA group (financial, 35.8%; emotional, 12.8%). Notably, our findings reveal that even subtle manipulative objectives (MA) can be as effective as employing explicit psychological strategies (SEMA) in swaying human decision-making. By revealing the potential for covert AI influence, this study highlights a critical vulnerability in human-AI interactions, emphasizing the need for ethical safeguards and regulatory frameworks to ensure responsible deployment of AI technologies and protect human autonomy.

  • 16 authors
·
Feb 11, 2025

An Overview of Catastrophic AI Risks

Rapid advancements in artificial intelligence (AI) have sparked growing concerns among experts, policymakers, and world leaders regarding the potential for increasingly advanced AI systems to pose catastrophic risks. Although numerous risks have been detailed separately, there is a pressing need for a systematic discussion and illustration of the potential dangers to better inform efforts to mitigate them. This paper provides an overview of the main sources of catastrophic AI risks, which we organize into four categories: malicious use, in which individuals or groups intentionally use AIs to cause harm; AI race, in which competitive environments compel actors to deploy unsafe AIs or cede control to AIs; organizational risks, highlighting how human factors and complex systems can increase the chances of catastrophic accidents; and rogue AIs, describing the inherent difficulty in controlling agents far more intelligent than humans. For each category of risk, we describe specific hazards, present illustrative stories, envision ideal scenarios, and propose practical suggestions for mitigating these dangers. Our goal is to foster a comprehensive understanding of these risks and inspire collective and proactive efforts to ensure that AIs are developed and deployed in a safe manner. Ultimately, we hope this will allow us to realize the benefits of this powerful technology while minimizing the potential for catastrophic outcomes.

  • 3 authors
·
Jun 20, 2023

LLMs Learn to Deceive Unintentionally: Emergent Misalignment in Dishonesty from Misaligned Samples to Biased Human-AI Interactions

Previous research has shown that LLMs finetuned on malicious or incorrect completions within narrow domains (e.g., insecure code or incorrect medical advice) can become broadly misaligned to exhibit harmful behaviors, which is called emergent misalignment. In this work, we investigate whether this phenomenon can extend beyond safety behaviors to a broader spectrum of dishonesty and deception under high-stakes scenarios (e.g., lying under pressure and deceptive behavior). To explore this, we finetune open-sourced LLMs on misaligned completions across diverse domains. Experimental results demonstrate that LLMs show broadly misaligned behavior in dishonesty. Additionally, we further explore this phenomenon in a downstream combined finetuning setting, and find that introducing as little as 1% of misalignment data into a standard downstream task is sufficient to decrease honest behavior over 20%. Furthermore, we consider a more practical human-AI interaction environment where we simulate both benign and biased users to interact with the assistant LLM. Notably, we find that the assistant can be misaligned unintentionally to exacerbate its dishonesty with only 10% biased user population. In summary, we extend the study of emergent misalignment to the domain of dishonesty and deception under high-stakes scenarios, and demonstrate that this risk arises not only through direct finetuning, but also in downstream mixture tasks and practical human-AI interactions.

Fudan-University Fudan University
·
Oct 9, 2025 2

Toxicity in ChatGPT: Analyzing Persona-assigned Language Models

Large language models (LLMs) have shown incredible capabilities and transcended the natural language processing (NLP) community, with adoption throughout many services like healthcare, therapy, education, and customer service. Since users include people with critical information needs like students or patients engaging with chatbots, the safety of these systems is of prime importance. Therefore, a clear understanding of the capabilities and limitations of LLMs is necessary. To this end, we systematically evaluate toxicity in over half a million generations of ChatGPT, a popular dialogue-based LLM. We find that setting the system parameter of ChatGPT by assigning it a persona, say that of the boxer Muhammad Ali, significantly increases the toxicity of generations. Depending on the persona assigned to ChatGPT, its toxicity can increase up to 6x, with outputs engaging in incorrect stereotypes, harmful dialogue, and hurtful opinions. This may be potentially defamatory to the persona and harmful to an unsuspecting user. Furthermore, we find concerning patterns where specific entities (e.g., certain races) are targeted more than others (3x more) irrespective of the assigned persona, that reflect inherent discriminatory biases in the model. We hope that our findings inspire the broader AI community to rethink the efficacy of current safety guardrails and develop better techniques that lead to robust, safe, and trustworthy AI systems.

  • 5 authors
·
Apr 11, 2023

Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions

Recent advancements in general-purpose AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment. However, the lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment. In particular, ML- and philosophy-oriented alignment research often views AI alignment as a static, unidirectional process (i.e., aiming to ensure that AI systems' objectives match humans) rather than an ongoing, mutual alignment problem [429]. This perspective largely neglects the long-term interaction and dynamic changes of alignment. To understand these gaps, we introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML), and others. We characterize, define and scope human-AI alignment. From this, we present a conceptual framework of "Bidirectional Human-AI Alignment" to organize the literature from a human-centered perspective. This framework encompasses both 1) conventional studies of aligning AI to humans that ensures AI produces the intended outcomes determined by humans, and 2) a proposed concept of aligning humans to AI, which aims to help individuals and society adjust to AI advancements both cognitively and behaviorally. Additionally, we articulate the key findings derived from literature analysis, including discussions about human values, interaction techniques, and evaluations. To pave the way for future studies, we envision three key challenges for future directions and propose examples of potential future solutions.

  • 24 authors
·
Jun 13, 2024

Revisiting Citizen Science Through the Lens of Hybrid Intelligence

Artificial Intelligence (AI) can augment and sometimes even replace human cognition. Inspired by efforts to value human agency alongside productivity, we discuss the benefits of solving Citizen Science (CS) tasks with Hybrid Intelligence (HI), a synergetic mixture of human and artificial intelligence. Currently there is no clear framework or methodology on how to create such an effective mixture. Due to the unique participant-centered set of values and the abundance of tasks drawing upon both human common sense and complex 21st century skills, we believe that the field of CS offers an invaluable testbed for the development of HI and human-centered AI of the 21st century, while benefiting CS as well. In order to investigate this potential, we first relate CS to adjacent computational disciplines. Then, we demonstrate that CS projects can be grouped according to their potential for HI-enhancement by examining two key dimensions: the level of digitization and the amount of knowledge or experience required for participation. Finally, we propose a framework for types of human-AI interaction in CS based on established criteria of HI. This "HI lens" provides the CS community with an overview of several ways to utilize the combination of AI and human intelligence in their projects. It also allows the AI community to gain ideas on how developing AI in CS projects can further their own field.

  • 16 authors
·
Apr 30, 2021

MobileSafetyBench: Evaluating Safety of Autonomous Agents in Mobile Device Control

Autonomous agents powered by large language models (LLMs) show promising potential in assistive tasks across various domains, including mobile device control. As these agents interact directly with personal information and device settings, ensuring their safe and reliable behavior is crucial to prevent undesirable outcomes. However, no benchmark exists for standardized evaluation of the safety of mobile device-control agents. In this work, we introduce MobileSafetyBench, a benchmark designed to evaluate the safety of device-control agents within a realistic mobile environment based on Android emulators. We develop a diverse set of tasks involving interactions with various mobile applications, including messaging and banking applications. To clearly evaluate safety apart from general capabilities, we design separate tasks measuring safety and tasks evaluating helpfulness. The safety tasks challenge agents with managing potential risks prevalent in daily life and include tests to evaluate robustness against indirect prompt injections. Our experiments demonstrate that while baseline agents, based on state-of-the-art LLMs, perform well in executing helpful tasks, they show poor performance in safety tasks. To mitigate these safety concerns, we propose a prompting method that encourages agents to prioritize safety considerations. While this method shows promise in promoting safer behaviors, there is still considerable room for improvement to fully earn user trust. This highlights the urgent need for continued research to develop more robust safety mechanisms in mobile environments. We open-source our benchmark at: https://mobilesafetybench.github.io/.

  • 5 authors
·
Oct 22, 2024

Evaluating the Social Impact of Generative AI Systems in Systems and Society

Generative AI systems across modalities, ranging from text (including code), image, audio, and video, have broad social impacts, but there is no official standard for means of evaluating those impacts or for which impacts should be evaluated. In this paper, we present a guide that moves toward a standard approach in evaluating a base generative AI system for any modality in two overarching categories: what can be evaluated in a base system independent of context and what can be evaluated in a societal context. Importantly, this refers to base systems that have no predetermined application or deployment context, including a model itself, as well as system components, such as training data. Our framework for a base system defines seven categories of social impact: bias, stereotypes, and representational harms; cultural values and sensitive content; disparate performance; privacy and data protection; financial costs; environmental costs; and data and content moderation labor costs. Suggested methods for evaluation apply to listed generative modalities and analyses of the limitations of existing evaluations serve as a starting point for necessary investment in future evaluations. We offer five overarching categories for what can be evaluated in a broader societal context, each with its own subcategories: trustworthiness and autonomy; inequality, marginalization, and violence; concentration of authority; labor and creativity; and ecosystem and environment. Each subcategory includes recommendations for mitigating harm.

  • 18 authors
·
Jun 9, 2023

Refusal-Trained LLMs Are Easily Jailbroken As Browser Agents

For safety reasons, large language models (LLMs) are trained to refuse harmful user instructions, such as assisting dangerous activities. We study an open question in this work: does the desired safety refusal, typically enforced in chat contexts, generalize to non-chat and agentic use cases? Unlike chatbots, LLM agents equipped with general-purpose tools, such as web browsers and mobile devices, can directly influence the real world, making it even more crucial to refuse harmful instructions. In this work, we primarily focus on red-teaming browser agents, LLMs that manipulate information via web browsers. To this end, we introduce Browser Agent Red teaming Toolkit (BrowserART), a comprehensive test suite designed specifically for red-teaming browser agents. BrowserART is consist of 100 diverse browser-related harmful behaviors (including original behaviors and ones sourced from HarmBench [Mazeika et al., 2024] and AirBench 2024 [Zeng et al., 2024b]) across both synthetic and real websites. Our empirical study on state-of-the-art browser agents reveals that, while the backbone LLM refuses harmful instructions as a chatbot, the corresponding agent does not. Moreover, attack methods designed to jailbreak refusal-trained LLMs in the chat settings transfer effectively to browser agents. With human rewrites, GPT-4o and o1-preview-based browser agents attempted 98 and 63 harmful behaviors (out of 100), respectively. We publicly release BrowserART and call on LLM developers, policymakers, and agent developers to collaborate on improving agent safety

  • 12 authors
·
Oct 11, 2024

Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science

Intelligent agents powered by large language models (LLMs) have demonstrated substantial promise in autonomously conducting experiments and facilitating scientific discoveries across various disciplines. While their capabilities are promising, they also introduce novel vulnerabilities that demand careful consideration for safety. However, there exists a notable gap in the literature, as there has been no comprehensive exploration of these vulnerabilities. This position paper fills this gap by conducting a thorough examination of vulnerabilities in LLM-based agents within scientific domains, shedding light on potential risks associated with their misuse and emphasizing the need for safety measures. We begin by providing a comprehensive overview of the potential risks inherent to scientific LLM agents, taking into account user intent, the specific scientific domain, and their potential impact on the external environment. Then, we delve into the origins of these vulnerabilities and provide a scoping review of the limited existing works. Based on our analysis, we propose a triadic framework involving human regulation, agent alignment, and an understanding of environmental feedback (agent regulation) to mitigate these identified risks. Furthermore, we highlight the limitations and challenges associated with safeguarding scientific agents and advocate for the development of improved models, robust benchmarks, and comprehensive regulations to address these issues effectively.

  • 13 authors
·
Feb 6, 2024

Red teaming ChatGPT via Jailbreaking: Bias, Robustness, Reliability and Toxicity

Recent breakthroughs in natural language processing (NLP) have permitted the synthesis and comprehension of coherent text in an open-ended way, therefore translating the theoretical algorithms into practical applications. The large language models (LLMs) have significantly impacted businesses such as report summarization software and copywriters. Observations indicate, however, that LLMs may exhibit social prejudice and toxicity, posing ethical and societal dangers of consequences resulting from irresponsibility. Large-scale benchmarks for accountable LLMs should consequently be developed. Although several empirical investigations reveal the existence of a few ethical difficulties in advanced LLMs, there is little systematic examination and user study of the risks and harmful behaviors of current LLM usage. To further educate future efforts on constructing ethical LLMs responsibly, we perform a qualitative research method called ``red teaming'' on OpenAI's ChatGPTIn this paper, ChatGPT refers to the version released on Dec 15th. to better understand the practical features of ethical dangers in recent LLMs. We analyze ChatGPT comprehensively from four perspectives: 1) Bias 2) Reliability 3) Robustness 4) Toxicity. In accordance with our stated viewpoints, we empirically benchmark ChatGPT on multiple sample datasets. We find that a significant number of ethical risks cannot be addressed by existing benchmarks, and hence illustrate them via additional case studies. In addition, we examine the implications of our findings on AI ethics and harmal behaviors of ChatGPT, as well as future problems and practical design considerations for responsible LLMs. We believe that our findings may give light on future efforts to determine and mitigate the ethical hazards posed by machines in LLM applications.

  • 4 authors
·
Jan 30, 2023

Oyster-I: Beyond Refusal -- Constructive Safety Alignment for Responsible Language Models

Large language models (LLMs) typically deploy safety mechanisms to prevent harmful content generation. Most current approaches focus narrowly on risks posed by malicious actors, often framing risks as adversarial events and relying on defensive refusals. However, in real-world settings, risks also come from non-malicious users seeking help while under psychological distress (e.g., self-harm intentions). In such cases, the model's response can strongly influence the user's next actions. Simple refusals may lead them to repeat, escalate, or move to unsafe platforms, creating worse outcomes. We introduce Constructive Safety Alignment (CSA), a human-centric paradigm that protects against malicious misuse while actively guiding vulnerable users toward safe and helpful results. Implemented in Oyster-I (Oy1), CSA combines game-theoretic anticipation of user reactions, fine-grained risk boundary discovery, and interpretable reasoning control, turning safety into a trust-building process. Oy1 achieves state-of-the-art safety among open models while retaining high general capabilities. On our Constructive Benchmark, it shows strong constructive engagement, close to GPT-5, and unmatched robustness on the Strata-Sword jailbreak dataset, nearing GPT-o1 levels. By shifting from refusal-first to guidance-first safety, CSA redefines the model-user relationship, aiming for systems that are not just safe, but meaningfully helpful. We release Oy1, code, and the benchmark to support responsible, user-centered AI.

  • 27 authors
·
Sep 1, 2025

ManagerBench: Evaluating the Safety-Pragmatism Trade-off in Autonomous LLMs

As large language models (LLMs) evolve from conversational assistants into autonomous agents, evaluating the safety of their actions becomes critical. Prior safety benchmarks have primarily focused on preventing generation of harmful content, such as toxic text. However, they overlook the challenge of agents taking harmful actions when the most effective path to an operational goal conflicts with human safety. To address this gap, we introduce ManagerBench, a benchmark that evaluates LLM decision-making in realistic, human-validated managerial scenarios. Each scenario forces a choice between a pragmatic but harmful action that achieves an operational goal, and a safe action that leads to worse operational performance. A parallel control set, where potential harm is directed only at inanimate objects, measures a model's pragmatism and identifies its tendency to be overly safe. Our findings indicate that the frontier LLMs perform poorly when navigating this safety-pragmatism trade-off. Many consistently choose harmful options to advance their operational goals, while others avoid harm only to become overly safe and ineffective. Critically, we find this misalignment does not stem from an inability to perceive harm, as models' harm assessments align with human judgments, but from flawed prioritization. ManagerBench is a challenging benchmark for a core component of agentic behavior: making safe choices when operational goals and alignment values incentivize conflicting actions. Benchmark & code available at https://github.com/technion-cs-nlp/ManagerBench.

  • 6 authors
·
Oct 1, 2025

A Survey on (M)LLM-Based GUI Agents

Graphical User Interface (GUI) Agents have emerged as a transformative paradigm in human-computer interaction, evolving from rule-based automation scripts to sophisticated AI-driven systems capable of understanding and executing complex interface operations. This survey provides a comprehensive examination of the rapidly advancing field of LLM-based GUI Agents, systematically analyzing their architectural foundations, technical components, and evaluation methodologies. We identify and analyze four fundamental components that constitute modern GUI Agents: (1) perception systems that integrate text-based parsing with multimodal understanding for comprehensive interface comprehension; (2) exploration mechanisms that construct and maintain knowledge bases through internal modeling, historical experience, and external information retrieval; (3) planning frameworks that leverage advanced reasoning methodologies for task decomposition and execution; and (4) interaction systems that manage action generation with robust safety controls. Through rigorous analysis of these components, we reveal how recent advances in large language models and multimodal learning have revolutionized GUI automation across desktop, mobile, and web platforms. We critically examine current evaluation frameworks, highlighting methodological limitations in existing benchmarks while proposing directions for standardization. This survey also identifies key technical challenges, including accurate element localization, effective knowledge retrieval, long-horizon planning, and safety-aware execution control, while outlining promising research directions for enhancing GUI Agents' capabilities. Our systematic review provides researchers and practitioners with a thorough understanding of the field's current state and offers insights into future developments in intelligent interface automation.

  • 15 authors
·
Mar 27, 2025

The Ethics of ChatGPT in Medicine and Healthcare: A Systematic Review on Large Language Models (LLMs)

With the introduction of ChatGPT, Large Language Models (LLMs) have received enormous attention in healthcare. Despite their potential benefits, researchers have underscored various ethical implications. While individual instances have drawn much attention, the debate lacks a systematic overview of practical applications currently researched and ethical issues connected to them. Against this background, this work aims to map the ethical landscape surrounding the current stage of deployment of LLMs in medicine and healthcare. Electronic databases and preprint servers were queried using a comprehensive search strategy. Studies were screened and extracted following a modified rapid review approach. Methodological quality was assessed using a hybrid approach. For 53 records, a meta-aggregative synthesis was performed. Four fields of applications emerged and testify to a vivid exploration phase. Advantages of using LLMs are attributed to their capacity in data analysis, personalized information provisioning, support in decision-making, mitigating information loss and enhancing information accessibility. However, we also identifies recurrent ethical concerns connected to fairness, bias, non-maleficence, transparency, and privacy. A distinctive concern is the tendency to produce harmful misinformation or convincingly but inaccurate content. A recurrent plea for ethical guidance and human oversight is evident. Given the variety of use cases, it is suggested that the ethical guidance debate be reframed to focus on defining what constitutes acceptable human oversight across the spectrum of applications. This involves considering diverse settings, varying potentials for harm, and different acceptable thresholds for performance and certainty in healthcare. In addition, a critical inquiry is necessary to determine the extent to which the current experimental use of LLMs is necessary and justified.

  • 2 authors
·
Mar 21, 2024

Automating Safety Enhancement for LLM-based Agents with Synthetic Risk Scenarios

Large Language Model (LLM)-based agents are increasingly deployed in real-world applications such as "digital assistants, autonomous customer service, and decision-support systems", where their ability to "interact in multi-turn, tool-augmented environments" makes them indispensable. However, ensuring the safety of these agents remains a significant challenge due to the diverse and complex risks arising from dynamic user interactions, external tool usage, and the potential for unintended harmful behaviors. To address this critical issue, we propose AutoSafe, the first framework that systematically enhances agent safety through fully automated synthetic data generation. Concretely, 1) we introduce an open and extensible threat model, OTS, which formalizes how unsafe behaviors emerge from the interplay of user instructions, interaction contexts, and agent actions. This enables precise modeling of safety risks across diverse scenarios. 2) we develop a fully automated data generation pipeline that simulates unsafe user behaviors, applies self-reflective reasoning to generate safe responses, and constructs a large-scale, diverse, and high-quality safety training dataset-eliminating the need for hazardous real-world data collection. To evaluate the effectiveness of our framework, we design comprehensive experiments on both synthetic and real-world safety benchmarks. Results demonstrate that AutoSafe boosts safety scores by 45% on average and achieves a 28.91% improvement on real-world tasks, validating the generalization ability of our learned safety strategies. These results highlight the practical advancement and scalability of AutoSafe in building safer LLM-based agents for real-world deployment. We have released the project page at https://auto-safe.github.io/.

  • 10 authors
·
May 23, 2025 1

Mutual Theory of Mind for Human-AI Communication

New developments are enabling AI systems to perceive, recognize, and respond with social cues based on inferences made from humans' explicit or implicit behavioral and verbal cues. These AI systems, equipped with an equivalent of human's Theory of Mind (ToM) capability, are currently serving as matchmakers on dating platforms, assisting student learning as teaching assistants, and enhancing productivity as work partners. They mark a new era in human-AI interaction (HAI) that diverges from traditional human-computer interaction (HCI), where computers are commonly seen as tools instead of social actors. Designing and understanding the human perceptions and experiences in this emerging HAI era becomes an urgent and critical issue for AI systems to fulfill human needs and mitigate risks across social contexts. In this paper, we posit the Mutual Theory of Mind (MToM) framework, inspired by our capability of ToM in human-human communications, to guide this new generation of HAI research by highlighting the iterative and mutual shaping nature of human-AI communication. We discuss the motivation of the MToM framework and its three key components that iteratively shape the human-AI communication in three stages. We then describe two empirical studies inspired by the MToM framework to demonstrate the power of MToM in guiding the design and understanding of human-AI communication. Finally, we discuss future research opportunities in human-AI interaction through the lens of MToM.

  • 2 authors
·
Oct 7, 2022

Context Engineering 2.0: The Context of Context Engineering

Karl Marx once wrote that ``the human essence is the ensemble of social relations'', suggesting that individuals are not isolated entities but are fundamentally shaped by their interactions with other entities, within which contexts play a constitutive and essential role. With the advent of computers and artificial intelligence, these contexts are no longer limited to purely human--human interactions: human--machine interactions are included as well. Then a central question emerges: How can machines better understand our situations and purposes? To address this challenge, researchers have recently introduced the concept of context engineering. Although it is often regarded as a recent innovation of the agent era, we argue that related practices can be traced back more than twenty years. Since the early 1990s, the field has evolved through distinct historical phases, each shaped by the intelligence level of machines: from early human--computer interaction frameworks built around primitive computers, to today's human--agent interaction paradigms driven by intelligent agents, and potentially to human--level or superhuman intelligence in the future. In this paper, we situate context engineering, provide a systematic definition, outline its historical and conceptual landscape, and examine key design considerations for practice. By addressing these questions, we aim to offer a conceptual foundation for context engineering and sketch its promising future. This paper is a stepping stone for a broader community effort toward systematic context engineering in AI systems.

  • 9 authors
·
Oct 30, 2025

A Safety and Security Framework for Real-World Agentic Systems

This paper introduces a dynamic and actionable framework for securing agentic AI systems in enterprise deployment. We contend that safety and security are not merely fixed attributes of individual models but also emergent properties arising from the dynamic interactions among models, orchestrators, tools, and data within their operating environments. We propose a new way of identification of novel agentic risks through the lens of user safety. Although, for traditional LLMs and agentic models in isolation, safety and security has a clear separation, through the lens of safety in agentic systems, they appear to be connected. Building on this foundation, we define an operational agentic risk taxonomy that unifies traditional safety and security concerns with novel, uniquely agentic risks, including tool misuse, cascading action chains, and unintended control amplification among others. At the core of our approach is a dynamic agentic safety and security framework that operationalizes contextual agentic risk management by using auxiliary AI models and agents, with human oversight, to assist in contextual risk discovery, evaluation, and mitigation. We further address one of the most challenging aspects of safety and security of agentic systems: risk discovery through sandboxed, AI-driven red teaming. We demonstrate the framework effectiveness through a detailed case study of NVIDIA flagship agentic research assistant, AI-Q Research Assistant, showcasing practical, end-to-end safety and security evaluations in complex, enterprise-grade agentic workflows. This risk discovery phase finds novel agentic risks that are then contextually mitigated. We also release the dataset from our case study, containing traces of over 10,000 realistic attack and defense executions of the agentic workflow to help advance research in agentic safety.

  • 12 authors
·
Nov 26, 2025

AILuminate: Introducing v1.0 of the AI Risk and Reliability Benchmark from MLCommons

The rapid advancement and deployment of AI systems have created an urgent need for standard safety-evaluation frameworks. This paper introduces AILuminate v1.0, the first comprehensive industry-standard benchmark for assessing AI-product risk and reliability. Its development employed an open process that included participants from multiple fields. The benchmark evaluates an AI system's resistance to prompts designed to elicit dangerous, illegal, or undesirable behavior in 12 hazard categories, including violent crimes, nonviolent crimes, sex-related crimes, child sexual exploitation, indiscriminate weapons, suicide and self-harm, intellectual property, privacy, defamation, hate, sexual content, and specialized advice (election, financial, health, legal). Our method incorporates a complete assessment standard, extensive prompt datasets, a novel evaluation framework, a grading and reporting system, and the technical as well as organizational infrastructure for long-term support and evolution. In particular, the benchmark employs an understandable five-tier grading scale (Poor to Excellent) and incorporates an innovative entropy-based system-response evaluation. In addition to unveiling the benchmark, this report also identifies limitations of our method and of building safety benchmarks generally, including evaluator uncertainty and the constraints of single-turn interactions. This work represents a crucial step toward establishing global standards for AI risk and reliability evaluation while acknowledging the need for continued development in areas such as multiturn interactions, multimodal understanding, coverage of additional languages, and emerging hazard categories. Our findings provide valuable insights for model developers, system integrators, and policymakers working to promote safer AI deployment.

  • 101 authors
·
Feb 19, 2025

The Psychogenic Machine: Simulating AI Psychosis, Delusion Reinforcement and Harm Enablement in Large Language Models

Background: Emerging reports of "AI psychosis" are on the rise, where user-LLM interactions may exacerbate or induce psychosis or adverse psychological symptoms. Whilst the sycophantic and agreeable nature of LLMs can be beneficial, it becomes a vector for harm by reinforcing delusional beliefs in vulnerable users. Methods: Psychosis-bench is a novel benchmark designed to systematically evaluate the psychogenicity of LLMs comprises 16 structured, 12-turn conversational scenarios simulating the progression of delusional themes(Erotic Delusions, Grandiose/Messianic Delusions, Referential Delusions) and potential harms. We evaluated eight prominent LLMs for Delusion Confirmation (DCS), Harm Enablement (HES), and Safety Intervention(SIS) across explicit and implicit conversational contexts. Findings: Across 1,536 simulated conversation turns, all LLMs demonstrated psychogenic potential, showing a strong tendency to perpetuate rather than challenge delusions (mean DCS of 0.91 pm0.88). Models frequently enabled harmful user requests (mean HES of 0.69 pm0.84) and offered safety interventions in only roughly a third of applicable turns (mean SIS of 0.37 pm0.48). 51 / 128 (39.8%) of scenarios had no safety interventions offered. Performance was significantly worse in implicit scenarios, models were more likely to confirm delusions and enable harm while offering fewer interventions (p < .001). A strong correlation was found between DCS and HES (rs = .77). Model performance varied widely, indicating that safety is not an emergent property of scale alone. Conclusion: This study establishes LLM psychogenicity as a quantifiable risk and underscores the urgent need for re-thinking how we train LLMs. We frame this issue not merely as a technical challenge but as a public health imperative requiring collaboration between developers, policymakers, and healthcare professionals.

  • 5 authors
·
Sep 13, 2025

Agentic Web: Weaving the Next Web with AI Agents

The emergence of AI agents powered by large language models (LLMs) marks a pivotal shift toward the Agentic Web, a new phase of the internet defined by autonomous, goal-driven interactions. In this paradigm, agents interact directly with one another to plan, coordinate, and execute complex tasks on behalf of users. This transition from human-driven to machine-to-machine interaction allows intent to be delegated, relieving users from routine digital operations and enabling a more interactive, automated web experience. In this paper, we present a structured framework for understanding and building the Agentic Web. We trace its evolution from the PC and Mobile Web eras and identify the core technological foundations that support this shift. Central to our framework is a conceptual model consisting of three key dimensions: intelligence, interaction, and economics. These dimensions collectively enable the capabilities of AI agents, such as retrieval, recommendation, planning, and collaboration. We analyze the architectural and infrastructural challenges involved in creating scalable agentic systems, including communication protocols, orchestration strategies, and emerging paradigms such as the Agent Attention Economy. We conclude by discussing the potential applications, societal risks, and governance issues posed by agentic systems, and outline research directions for developing open, secure, and intelligent ecosystems shaped by both human intent and autonomous agent behavior. A continuously updated collection of relevant studies for agentic web is available at: https://github.com/SafeRL-Lab/agentic-web.

  • 18 authors
·
Jul 28, 2025

HumanAgencyBench: Scalable Evaluation of Human Agency Support in AI Assistants

As humans delegate more tasks and decisions to artificial intelligence (AI), we risk losing control of our individual and collective futures. Relatively simple algorithmic systems already steer human decision-making, such as social media feed algorithms that lead people to unintentionally and absent-mindedly scroll through engagement-optimized content. In this paper, we develop the idea of human agency by integrating philosophical and scientific theories of agency with AI-assisted evaluation methods: using large language models (LLMs) to simulate and validate user queries and to evaluate AI responses. We develop HumanAgencyBench (HAB), a scalable and adaptive benchmark with six dimensions of human agency based on typical AI use cases. HAB measures the tendency of an AI assistant or agent to Ask Clarifying Questions, Avoid Value Manipulation, Correct Misinformation, Defer Important Decisions, Encourage Learning, and Maintain Social Boundaries. We find low-to-moderate agency support in contemporary LLM-based assistants and substantial variation across system developers and dimensions. For example, while Anthropic LLMs most support human agency overall, they are the least supportive LLMs in terms of Avoid Value Manipulation. Agency support does not appear to consistently result from increasing LLM capabilities or instruction-following behavior (e.g., RLHF), and we encourage a shift towards more robust safety and alignment targets.

  • 4 authors
·
Sep 10, 2025 2

Perpetuating Misogyny with Generative AI: How Model Personalization Normalizes Gendered Harm

Open-source text-to-image (TTI) pipelines have become dominant in the landscape of AI-generated visual content, driven by technological advances that enable users to personalize models through adapters tailored to specific tasks. While personalization methods such as LoRA offer unprecedented creative opportunities, they also facilitate harmful practices, including the generation of non-consensual deepfakes and the amplification of misogynistic or hypersexualized content. This study presents an exploratory sociotechnical analysis of CivitAI, the most active platform for sharing and developing open-source TTI models. Drawing on a dataset of more than 40 million user-generated images and over 230,000 models, we find a disproportionate rise in not-safe-for-work (NSFW) content and a significant number of models intended to mimic real individuals. We also observe a strong influence of internet subcultures on the tools and practices shaping model personalizations and resulting visual media. In response to these findings, we contextualize the emergence of exploitative visual media through feminist and constructivist perspectives on technology, emphasizing how design choices and community dynamics shape platform outcomes. Building on this analysis, we propose interventions aimed at mitigating downstream harm, including improved content moderation, rethinking tool design, and establishing clearer platform policies to promote accountability and consent.

  • 2 authors
·
May 7, 2025

Comparing Software Developers with ChatGPT: An Empirical Investigation

The advent of automation in particular Software Engineering (SE) tasks has transitioned from theory to reality. Numerous scholarly articles have documented the successful application of Artificial Intelligence to address issues in areas such as project management, modeling, testing, and development. A recent innovation is the introduction of ChatGPT, an ML-infused chatbot, touted as a resource proficient in generating programming codes and formulating software testing strategies for developers and testers respectively. Although there is speculation that AI-based computation can increase productivity and even substitute software engineers in software development, there is currently a lack of empirical evidence to verify this. Moreover, despite the primary focus on enhancing the accuracy of AI systems, non-functional requirements including energy efficiency, vulnerability, fairness (i.e., human bias), and safety frequently receive insufficient attention. This paper posits that a comprehensive comparison of software engineers and AI-based solutions, considering various evaluation criteria, is pivotal in fostering human-machine collaboration, enhancing the reliability of AI-based methods, and understanding task suitability for humans or AI. Furthermore, it facilitates the effective implementation of cooperative work structures and human-in-the-loop processes. This paper conducts an empirical investigation, contrasting the performance of software engineers and AI systems, like ChatGPT, across different evaluation metrics. The empirical study includes a case of assessing ChatGPT-generated code versus code produced by developers and uploaded in Leetcode.

  • 3 authors
·
May 19, 2023

SafeAgentBench: A Benchmark for Safe Task Planning of Embodied LLM Agents

With the integration of large language models (LLMs), embodied agents have strong capabilities to understand and plan complicated natural language instructions. However, a foreseeable issue is that those embodied agents can also flawlessly execute some hazardous tasks, potentially causing damages in the real world. Existing benchmarks predominantly overlook critical safety risks, focusing solely on planning performance, while a few evaluate LLMs' safety awareness only on non-interactive image-text data. To address this gap, we present SafeAgentBench-the first benchmark for safety-aware task planning of embodied LLM agents in interactive simulation environments. SafeAgentBench includes: (1) an executable, diverse, and high-quality dataset of 750 tasks, rigorously curated to cover 10 potential hazards and 3 task types; (2) SafeAgentEnv, a universal embodied environment with a low-level controller, supporting multi-agent execution with 17 high-level actions for 8 state-of-the-art baselines; and (3) reliable evaluation methods from both execution and semantic perspectives. Experimental results show that, although agents based on different design frameworks exhibit substantial differences in task success rates, their overall safety awareness remains weak. The most safety-conscious baseline achieves only a 10\% rejection rate for detailed hazardous tasks. Moreover, simply replacing the LLM driving the agent does not lead to notable improvements in safety awareness. More details and code are available at https://github.com/shengyin1224/SafeAgentBench.

  • 10 authors
·
Dec 17, 2024

The impact of using an AI chatbot to respond to patient messages

Documentation burden is a major contributor to clinician burnout, which is rising nationally and is an urgent threat to our ability to care for patients. Artificial intelligence (AI) chatbots, such as ChatGPT, could reduce clinician burden by assisting with documentation. Although many hospitals are actively integrating such systems into electronic medical record systems, AI chatbots utility and impact on clinical decision-making have not been studied for this intended use. We are the first to examine the utility of large language models in assisting clinicians draft responses to patient questions. In our two-stage cross-sectional study, 6 oncologists responded to 100 realistic synthetic cancer patient scenarios and portal messages developed to reflect common medical situations, first manually, then with AI assistance. We find AI-assisted responses were longer, less readable, but provided acceptable drafts without edits 58% of time. AI assistance improved efficiency 77% of time, with low harm risk (82% safe). However, 7.7% unedited AI responses could severely harm. In 31% cases, physicians thought AI drafts were human-written. AI assistance led to more patient education recommendations, fewer clinical actions than manual responses. Results show promise for AI to improve clinician efficiency and patient care through assisting documentation, if used judiciously. Monitoring model outputs and human-AI interaction remains crucial for safe implementation.

  • 15 authors
·
Oct 26, 2023

Large Language Models as Zero-Shot Human Models for Human-Robot Interaction

Human models play a crucial role in human-robot interaction (HRI), enabling robots to consider the impact of their actions on people and plan their behavior accordingly. However, crafting good human models is challenging; capturing context-dependent human behavior requires significant prior knowledge and/or large amounts of interaction data, both of which are difficult to obtain. In this work, we explore the potential of large-language models (LLMs) -- which have consumed vast amounts of human-generated text data -- to act as zero-shot human models for HRI. Our experiments on three social datasets yield promising results; the LLMs are able to achieve performance comparable to purpose-built models. That said, we also discuss current limitations, such as sensitivity to prompts and spatial/numerical reasoning mishaps. Based on our findings, we demonstrate how LLM-based human models can be integrated into a social robot's planning process and applied in HRI scenarios. Specifically, we present one case study on a simulated trust-based table-clearing task and replicate past results that relied on custom models. Next, we conduct a new robot utensil-passing experiment (n = 65) where preliminary results show that planning with a LLM-based human model can achieve gains over a basic myopic plan. In summary, our results show that LLMs offer a promising (but incomplete) approach to human modeling for HRI.

  • 2 authors
·
Mar 6, 2023

Open Problems in Machine Unlearning for AI Safety

As AI systems become more capable, widely deployed, and increasingly autonomous in critical areas such as cybersecurity, biological research, and healthcare, ensuring their safety and alignment with human values is paramount. Machine unlearning -- the ability to selectively forget or suppress specific types of knowledge -- has shown promise for privacy and data removal tasks, which has been the primary focus of existing research. More recently, its potential application to AI safety has gained attention. In this paper, we identify key limitations that prevent unlearning from serving as a comprehensive solution for AI safety, particularly in managing dual-use knowledge in sensitive domains like cybersecurity and chemical, biological, radiological, and nuclear (CBRN) safety. In these contexts, information can be both beneficial and harmful, and models may combine seemingly harmless information for harmful purposes -- unlearning this information could strongly affect beneficial uses. We provide an overview of inherent constraints and open problems, including the broader side effects of unlearning dangerous knowledge, as well as previously unexplored tensions between unlearning and existing safety mechanisms. Finally, we investigate challenges related to evaluation, robustness, and the preservation of safety features during unlearning. By mapping these limitations and open challenges, we aim to guide future research toward realistic applications of unlearning within a broader AI safety framework, acknowledging its limitations and highlighting areas where alternative approaches may be required.

  • 19 authors
·
Jan 8, 2025

Measuring Harmfulness of Computer-Using Agents

Computer-using agents (CUAs), which autonomously control computers to perform multi-step actions, might pose significant safety risks if misused. Existing benchmarks mostly evaluate language models' (LMs) safety risks in chatbots or simple tool-usage scenarios, without granting full computer access. To better evaluate CUAs' misuse risks, we introduce a new benchmark: CUAHarm. CUAHarm consists of 104 expert-written realistic misuse risks, such as disabling firewalls, leaking confidential information, launching denial-of-service attacks, or installing backdoors. We provide a sandbox environment and rule-based verifiable rewards to measure CUAs' success rates in executing these tasks (e.g., whether the firewall is indeed disabled), not just refusal. We evaluate multiple frontier open-source and proprietary LMs, such as Claude Sonnet, GPT-4o, Gemini Pro 1.5, Llama-3.3-70B, and Mistral Large 2. Surprisingly, even without carefully designed jailbreaking prompts, these frontier LMs comply with executing these malicious tasks at a high success rate (e.g., 59% for Claude 3.7 Sonnet). Newer models show higher misuse rates: Claude 3.7 Sonnet succeeds on 15% more tasks than Claude 3.5. While these models are robust to common malicious prompts (e.g., creating a bomb) in chatbot settings, they behave unsafely as CUAs. We further evaluate a leading agentic framework (UI-TARS-1.5) and find that while it improves performance, it also amplifies misuse risks. Benign variants reveal refusals stem from alignment, not capability limits. To mitigate risks, we explore using LMs to monitor CUAs' actions and chain-of-thoughts (CoTs). Monitoring CUAs is significantly harder than chatbot outputs. Monitoring CoTs yields modest gains, with average detection accuracy at only 72%. Even with hierarchical summarization, improvement is limited to 4%. CUAHarm will be released at https://github.com/db-ol/CUAHarm.

  • 4 authors
·
Jul 31, 2025

MRAC Track 1: 2nd Workshop on Multimodal, Generative and Responsible Affective Computing

With the rapid advancements in multimodal generative technology, Affective Computing research has provoked discussion about the potential consequences of AI systems equipped with emotional intelligence. Affective Computing involves the design, evaluation, and implementation of Emotion AI and related technologies aimed at improving people's lives. Designing a computational model in affective computing requires vast amounts of multimodal data, including RGB images, video, audio, text, and physiological signals. Moreover, Affective Computing research is deeply engaged with ethical considerations at various stages-from training emotionally intelligent models on large-scale human data to deploying these models in specific applications. Fundamentally, the development of any AI system must prioritize its impact on humans, aiming to augment and enhance human abilities rather than replace them, while drawing inspiration from human intelligence in a safe and responsible manner. The MRAC 2024 Track 1 workshop seeks to extend these principles from controlled, small-scale lab environments to real-world, large-scale contexts, emphasizing responsible development. The workshop also aims to highlight the potential implications of generative technology, along with the ethical consequences of its use, to researchers and industry professionals. To the best of our knowledge, this is the first workshop series to comprehensively address the full spectrum of multimodal, generative affective computing from a responsible AI perspective, and this is the second iteration of this workshop. Webpage: https://react-ws.github.io/2024/

  • 6 authors
·
Sep 11, 2024

Ethically-Aware Participatory Design of a Productivity Social Robot for College Students

College students often face academic and life stressors affecting productivity, especially students with Attention Deficit Hyperactivity Disorder (ADHD) who experience executive functioning challenges. Conventional productivity tools typically demand sustained self-discipline and consistent use, which many students struggle with, leading to disruptive app-switching behaviors. Socially Assistive Robots (SARs), known for their intuitive and interactive nature, offer promising potential to support productivity in academic environments, having been successfully utilized in domains like education, cognitive development, and mental health. To leverage SARs effectively in addressing student productivity, this study employed a Participatory Design (PD) approach, directly involving college students and a Student Success and Well-Being Coach in the design process. Through interviews and a collaborative workshop, we gathered detailed insights on productivity challenges and identified desirable features for a productivity-focused SAR. Importantly, ethical considerations were integrated from the onset, facilitating responsible and user-aligned design choices. Our contributions include comprehensive insights into student productivity challenges, SAR design preferences, and actionable recommendations for effective robot characteristics. Additionally, we present stakeholder-derived ethical guidelines to inform responsible future implementations of productivity-focused SARs in higher education.

  • 2 authors
·
Nov 30, 2025

AI Transparency in the Age of LLMs: A Human-Centered Research Roadmap

The rise of powerful large language models (LLMs) brings about tremendous opportunities for innovation but also looming risks for individuals and society at large. We have reached a pivotal moment for ensuring that LLMs and LLM-infused applications are developed and deployed responsibly. However, a central pillar of responsible AI -- transparency -- is largely missing from the current discourse around LLMs. It is paramount to pursue new approaches to provide transparency for LLMs, and years of research at the intersection of AI and human-computer interaction (HCI) highlight that we must do so with a human-centered perspective: Transparency is fundamentally about supporting appropriate human understanding, and this understanding is sought by different stakeholders with different goals in different contexts. In this new era of LLMs, we must develop and design approaches to transparency by considering the needs of stakeholders in the emerging LLM ecosystem, the novel types of LLM-infused applications being built, and the new usage patterns and challenges around LLMs, all while building on lessons learned about how people process, interact with, and make use of information. We reflect on the unique challenges that arise in providing transparency for LLMs, along with lessons learned from HCI and responsible AI research that has taken a human-centered perspective on AI transparency. We then lay out four common approaches that the community has taken to achieve transparency -- model reporting, publishing evaluation results, providing explanations, and communicating uncertainty -- and call out open questions around how these approaches may or may not be applied to LLMs. We hope this provides a starting point for discussion and a useful roadmap for future research.

  • 2 authors
·
Jun 2, 2023

Digitizing Touch with an Artificial Multimodal Fingertip

Touch is a crucial sensing modality that provides rich information about object properties and interactions with the physical environment. Humans and robots both benefit from using touch to perceive and interact with the surrounding environment (Johansson and Flanagan, 2009; Li et al., 2020; Calandra et al., 2017). However, no existing systems provide rich, multi-modal digital touch-sensing capabilities through a hemispherical compliant embodiment. Here, we describe several conceptual and technological innovations to improve the digitization of touch. These advances are embodied in an artificial finger-shaped sensor with advanced sensing capabilities. Significantly, this fingertip contains high-resolution sensors (~8.3 million taxels) that respond to omnidirectional touch, capture multi-modal signals, and use on-device artificial intelligence to process the data in real time. Evaluations show that the artificial fingertip can resolve spatial features as small as 7 um, sense normal and shear forces with a resolution of 1.01 mN and 1.27 mN, respectively, perceive vibrations up to 10 kHz, sense heat, and even sense odor. Furthermore, it embeds an on-device AI neural network accelerator that acts as a peripheral nervous system on a robot and mimics the reflex arc found in humans. These results demonstrate the possibility of digitizing touch with superhuman performance. The implications are profound, and we anticipate potential applications in robotics (industrial, medical, agricultural, and consumer-level), virtual reality and telepresence, prosthetics, and e-commerce. Toward digitizing touch at scale, we open-source a modular platform to facilitate future research on the nature of touch.

  • 23 authors
·
Nov 4, 2024

AI-based Wearable Vision Assistance System for the Visually Impaired: Integrating Real-Time Object Recognition and Contextual Understanding Using Large Vision-Language Models

Visual impairment affects the ability of people to live a life like normal people. Such people face challenges in performing activities of daily living, such as reading, writing, traveling and participating in social gatherings. Many traditional approaches are available to help visually impaired people; however, these are limited in obtaining contextually rich environmental information necessary for independent living. In order to overcome this limitation, this paper introduces a novel wearable vision assistance system that has a hat-mounted camera connected to a Raspberry Pi 4 Model B (8GB RAM) with artificial intelligence (AI) technology to deliver real-time feedback to a user through a sound beep mechanism. The key features of this system include a user-friendly procedure for the recognition of new people or objects through a one-click process that allows users to add data on new individuals and objects for later detection, enhancing the accuracy of the recognition over time. The system provides detailed descriptions of objects in the user's environment using a large vision language model (LVLM). In addition, it incorporates a distance sensor that activates a beeping sound using a buzzer as soon as the user is about to collide with an object, helping to ensure safety while navigating their environment. A comprehensive evaluation is carried out to evaluate the proposed AI-based solution against traditional support techniques. Comparative analysis shows that the proposed solution with its innovative combination of hardware and AI (including LVLMs with IoT), is a significant advancement in assistive technology that aims to solve the major issues faced by the community of visually impaired people

  • 6 authors
·
Dec 28, 2024

Are Personalized Stochastic Parrots More Dangerous? Evaluating Persona Biases in Dialogue Systems

Recent advancements in Large Language Models empower them to follow freeform instructions, including imitating generic or specific demographic personas in conversations. We define generic personas to represent demographic groups, such as "an Asian person", whereas specific personas may take the form of specific popular Asian names like "Yumi". While the adoption of personas enriches user experiences by making dialogue systems more engaging and approachable, it also casts a shadow of potential risk by exacerbating social biases within model responses, thereby causing societal harm through interactions with users. In this paper, we systematically study "persona biases", which we define to be the sensitivity of dialogue models' harmful behaviors contingent upon the personas they adopt. We categorize persona biases into biases in harmful expression and harmful agreement, and establish a comprehensive evaluation framework to measure persona biases in five aspects: Offensiveness, Toxic Continuation, Regard, Stereotype Agreement, and Toxic Agreement. Additionally, we propose to investigate persona biases by experimenting with UNIVERSALPERSONA, a systematically constructed persona dataset encompassing various types of both generic and specific model personas. Through benchmarking on four different models -- including Blender, ChatGPT, Alpaca, and Vicuna -- our study uncovers significant persona biases in dialogue systems. Our findings also underscore the pressing need to revisit the use of personas in dialogue agents to ensure safe application.

  • 5 authors
·
Oct 8, 2023

Personalized Safety in LLMs: A Benchmark and A Planning-Based Agent Approach

Large language models (LLMs) typically generate identical or similar responses for all users given the same prompt, posing serious safety risks in high-stakes applications where user vulnerabilities differ widely. Existing safety evaluations primarily rely on context-independent metrics - such as factuality, bias, or toxicity - overlooking the fact that the same response may carry divergent risks depending on the user's background or condition. We introduce personalized safety to fill this gap and present PENGUIN - a benchmark comprising 14,000 scenarios across seven sensitive domains with both context-rich and context-free variants. Evaluating six leading LLMs, we demonstrate that personalized user information significantly improves safety scores by 43.2%, confirming the effectiveness of personalization in safety alignment. However, not all context attributes contribute equally to safety enhancement. To address this, we develop RAISE - a training-free, two-stage agent framework that strategically acquires user-specific background. RAISE improves safety scores by up to 31.6% over six vanilla LLMs, while maintaining a low interaction cost of just 2.7 user queries on average. Our findings highlight the importance of selective information gathering in safety-critical domains and offer a practical solution for personalizing LLM responses without model retraining. This work establishes a foundation for safety research that adapts to individual user contexts rather than assuming a universal harm standard.

  • 7 authors
·
May 24, 2025 2

Balancing Transparency and Risk: The Security and Privacy Risks of Open-Source Machine Learning Models

The field of artificial intelligence (AI) has experienced remarkable progress in recent years, driven by the widespread adoption of open-source machine learning models in both research and industry. Considering the resource-intensive nature of training on vast datasets, many applications opt for models that have already been trained. Hence, a small number of key players undertake the responsibility of training and publicly releasing large pre-trained models, providing a crucial foundation for a wide range of applications. However, the adoption of these open-source models carries inherent privacy and security risks that are often overlooked. To provide a concrete example, an inconspicuous model may conceal hidden functionalities that, when triggered by specific input patterns, can manipulate the behavior of the system, such as instructing self-driving cars to ignore the presence of other vehicles. The implications of successful privacy and security attacks encompass a broad spectrum, ranging from relatively minor damage like service interruptions to highly alarming scenarios, including physical harm or the exposure of sensitive user data. In this work, we present a comprehensive overview of common privacy and security threats associated with the use of open-source models. By raising awareness of these dangers, we strive to promote the responsible and secure use of AI systems.

  • 3 authors
·
Aug 18, 2023

ChatbotManip: A Dataset to Facilitate Evaluation and Oversight of Manipulative Chatbot Behaviour

This paper introduces ChatbotManip, a novel dataset for studying manipulation in Chatbots. It contains simulated generated conversations between a chatbot and a (simulated) user, where the chatbot is explicitly asked to showcase manipulation tactics, persuade the user towards some goal, or simply be helpful. We consider a diverse set of chatbot manipulation contexts, from consumer and personal advice to citizen advice and controversial proposition argumentation. Each conversation is annotated by human annotators for both general manipulation and specific manipulation tactics. Our research reveals three key findings. First, Large Language Models (LLMs) can be manipulative when explicitly instructed, with annotators identifying manipulation in approximately 84\% of such conversations. Second, even when only instructed to be ``persuasive'' without explicit manipulation prompts, LLMs frequently default to controversial manipulative strategies, particularly gaslighting and fear enhancement. Third, small fine-tuned open source models, such as BERT+BiLSTM have a performance comparable to zero-shot classification with larger models like Gemini 2.5 pro in detecting manipulation, but are not yet reliable for real-world oversight. Our work provides important insights for AI safety research and highlights the need of addressing manipulation risks as LLMs are increasingly deployed in consumer-facing applications.

  • 4 authors
·
Jun 11, 2025

How Are LLMs Mitigating Stereotyping Harms? Learning from Search Engine Studies

With the widespread availability of LLMs since the release of ChatGPT and increased public scrutiny, commercial model development appears to have focused their efforts on 'safety' training concerning legal liabilities at the expense of social impact evaluation. This mimics a similar trend which we could observe for search engine autocompletion some years prior. We draw on scholarship from NLP and search engine auditing and present a novel evaluation task in the style of autocompletion prompts to assess stereotyping in LLMs. We assess LLMs by using four metrics, namely refusal rates, toxicity, sentiment and regard, with and without safety system prompts. Our findings indicate an improvement to stereotyping outputs with the system prompt, but overall a lack of attention by LLMs under study to certain harms classified as toxic, particularly for prompts about peoples/ethnicities and sexual orientation. Mentions of intersectional identities trigger a disproportionate amount of stereotyping. Finally, we discuss the implications of these findings about stereotyping harms in light of the coming intermingling of LLMs and search and the choice of stereotyping mitigation policy to adopt. We address model builders, academics, NLP practitioners and policy makers, calling for accountability and awareness concerning stereotyping harms, be it for training data curation, leader board design and usage, or social impact measurement.

  • 2 authors
·
Jul 16, 2024

Generating Robot Constitutions & Benchmarks for Semantic Safety

Until recently, robotics safety research was predominantly about collision avoidance and hazard reduction in the immediate vicinity of a robot. Since the advent of large vision and language models (VLMs), robots are now also capable of higher-level semantic scene understanding and natural language interactions with humans. Despite their known vulnerabilities (e.g. hallucinations or jail-breaking), VLMs are being handed control of robots capable of physical contact with the real world. This can lead to dangerous behaviors, making semantic safety for robots a matter of immediate concern. Our contributions in this paper are two fold: first, to address these emerging risks, we release the ASIMOV Benchmark, a large-scale and comprehensive collection of datasets for evaluating and improving semantic safety of foundation models serving as robot brains. Our data generation recipe is highly scalable: by leveraging text and image generation techniques, we generate undesirable situations from real-world visual scenes and human injury reports from hospitals. Secondly, we develop a framework to automatically generate robot constitutions from real-world data to steer a robot's behavior using Constitutional AI mechanisms. We propose a novel auto-amending process that is able to introduce nuances in written rules of behavior; this can lead to increased alignment with human preferences on behavior desirability and safety. We explore trade-offs between generality and specificity across a diverse set of constitutions of different lengths, and demonstrate that a robot is able to effectively reject unconstitutional actions. We measure a top alignment rate of 84.3% on the ASIMOV Benchmark using generated constitutions, outperforming no-constitution baselines and human-written constitutions. Data is available at asimov-benchmark.github.io

  • 5 authors
·
Mar 11, 2025