Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMonotonic Location Attention for Length Generalization
We explore different ways to utilize position-based cross-attention in seq2seq networks to enable length generalization in algorithmic tasks. We show that a simple approach of interpolating the original and reversed encoded representations combined with relative attention allows near-perfect length generalization for both forward and reverse lookup tasks or copy tasks that had been generally hard to tackle. We also devise harder diagnostic tasks where the relative distance of the ideal attention position varies with timestep. In such settings, the simple interpolation trick with relative attention is not sufficient. We introduce novel variants of location attention building on top of Dubois et al. (2020) to address the new diagnostic tasks. We also show the benefits of our approaches for length generalization in SCAN (Lake & Baroni, 2018) and CFQ (Keysers et al., 2020). Our code is available on GitHub.
What Algorithms can Transformers Learn? A Study in Length Generalization
Large language models exhibit surprising emergent generalization properties, yet also struggle on many simple reasoning tasks such as arithmetic and parity. This raises the question of if and when Transformer models can learn the true algorithm for solving a task. We study the scope of Transformers' abilities in the specific setting of length generalization on algorithmic tasks. Here, we propose a unifying framework to understand when and how Transformers can exhibit strong length generalization on a given task. Specifically, we leverage RASP (Weiss et al., 2021) -- a programming language designed for the computational model of a Transformer -- and introduce the RASP-Generalization Conjecture: Transformers tend to length generalize on a task if the task can be solved by a short RASP program which works for all input lengths. This simple conjecture remarkably captures most known instances of length generalization on algorithmic tasks. Moreover, we leverage our insights to drastically improve generalization performance on traditionally hard tasks (such as parity and addition). On the theoretical side, we give a simple example where the "min-degree-interpolator" model of learning from Abbe et al. (2023) does not correctly predict Transformers' out-of-distribution behavior, but our conjecture does. Overall, our work provides a novel perspective on the mechanisms of compositional generalization and the algorithmic capabilities of Transformers.
Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
In this paper we propose to study generalization of neural networks on small algorithmically generated datasets. In this setting, questions about data efficiency, memorization, generalization, and speed of learning can be studied in great detail. In some situations we show that neural networks learn through a process of "grokking" a pattern in the data, improving generalization performance from random chance level to perfect generalization, and that this improvement in generalization can happen well past the point of overfitting. We also study generalization as a function of dataset size and find that smaller datasets require increasing amounts of optimization for generalization. We argue that these datasets provide a fertile ground for studying a poorly understood aspect of deep learning: generalization of overparametrized neural networks beyond memorization of the finite training dataset.
To grok or not to grok: Disentangling generalization and memorization on corrupted algorithmic datasets
Robust generalization is a major challenge in deep learning, particularly when the number of trainable parameters is very large. In general, it is very difficult to know if the network has memorized a particular set of examples or understood the underlying rule (or both). Motivated by this challenge, we study an interpretable model where generalizing representations are understood analytically, and are easily distinguishable from the memorizing ones. Namely, we consider multi-layer perceptron (MLP) and Transformer architectures trained on modular arithmetic tasks, where (xi cdot 100%) of labels are corrupted (i.e. some results of the modular operations in the training set are incorrect). We show that (i) it is possible for the network to memorize the corrupted labels and achieve 100% generalization at the same time; (ii) the memorizing neurons can be identified and pruned, lowering the accuracy on corrupted data and improving the accuracy on uncorrupted data; (iii) regularization methods such as weight decay, dropout and BatchNorm force the network to ignore the corrupted data during optimization, and achieve 100% accuracy on the uncorrupted dataset; and (iv) the effect of these regularization methods is (``mechanistically'') interpretable: weight decay and dropout force all the neurons to learn generalizing representations, while BatchNorm de-amplifies the output of memorizing neurons and amplifies the output of the generalizing ones. Finally, we show that in the presence of regularization, the training dynamics involves two consecutive stages: first, the network undergoes grokking dynamics reaching high train and test accuracy; second, it unlearns the memorizing representations, where the train accuracy suddenly jumps from 100% to 100 (1-xi)%.
Algorithmic Stability of Heavy-Tailed SGD with General Loss Functions
Heavy-tail phenomena in stochastic gradient descent (SGD) have been reported in several empirical studies. Experimental evidence in previous works suggests a strong interplay between the heaviness of the tails and generalization behavior of SGD. To address this empirical phenomena theoretically, several works have made strong topological and statistical assumptions to link the generalization error to heavy tails. Very recently, new generalization bounds have been proven, indicating a non-monotonic relationship between the generalization error and heavy tails, which is more pertinent to the reported empirical observations. While these bounds do not require additional topological assumptions given that SGD can be modeled using a heavy-tailed stochastic differential equation (SDE), they can only apply to simple quadratic problems. In this paper, we build on this line of research and develop generalization bounds for a more general class of objective functions, which includes non-convex functions as well. Our approach is based on developing Wasserstein stability bounds for heavy-tailed SDEs and their discretizations, which we then convert to generalization bounds. Our results do not require any nontrivial assumptions; yet, they shed more light to the empirical observations, thanks to the generality of the loss functions.
Studying Large Language Model Generalization with Influence Functions
When trying to gain better visibility into a machine learning model in order to understand and mitigate the associated risks, a potentially valuable source of evidence is: which training examples most contribute to a given behavior? Influence functions aim to answer a counterfactual: how would the model's parameters (and hence its outputs) change if a given sequence were added to the training set? While influence functions have produced insights for small models, they are difficult to scale to large language models (LLMs) due to the difficulty of computing an inverse-Hessian-vector product (IHVP). We use the Eigenvalue-corrected Kronecker-Factored Approximate Curvature (EK-FAC) approximation to scale influence functions up to LLMs with up to 52 billion parameters. In our experiments, EK-FAC achieves similar accuracy to traditional influence function estimators despite the IHVP computation being orders of magnitude faster. We investigate two algorithmic techniques to reduce the cost of computing gradients of candidate training sequences: TF-IDF filtering and query batching. We use influence functions to investigate the generalization patterns of LLMs, including the sparsity of the influence patterns, increasing abstraction with scale, math and programming abilities, cross-lingual generalization, and role-playing behavior. Despite many apparently sophisticated forms of generalization, we identify a surprising limitation: influences decay to near-zero when the order of key phrases is flipped. Overall, influence functions give us a powerful new tool for studying the generalization properties of LLMs.
Tropical Attention: Neural Algorithmic Reasoning for Combinatorial Algorithms
Dynamic programming (DP) algorithms for combinatorial optimization problems work with taking maximization, minimization, and classical addition in their recursion algorithms. The associated value functions correspond to convex polyhedra in the max plus semiring. Existing Neural Algorithmic Reasoning models, however, rely on softmax-normalized dot-product attention where the smooth exponential weighting blurs these sharp polyhedral structures and collapses when evaluated on out-of-distribution (OOD) settings. We introduce Tropical attention, a novel attention function that operates natively in the max-plus semiring of tropical geometry. We prove that Tropical attention can approximate tropical circuits of DP-type combinatorial algorithms. We then propose that using Tropical transformers enhances empirical OOD performance in both length generalization and value generalization, on algorithmic reasoning tasks, surpassing softmax baselines while remaining stable under adversarial attacks. We also present adversarial-attack generalization as a third axis for Neural Algorithmic Reasoning benchmarking. Our results demonstrate that Tropical attention restores the sharp, scale-invariant reasoning absent from softmax.
Neural Algorithmic Reasoning with Causal Regularisation
Recent work on neural algorithmic reasoning has investigated the reasoning capabilities of neural networks, effectively demonstrating they can learn to execute classical algorithms on unseen data coming from the train distribution. However, the performance of existing neural reasoners significantly degrades on out-of-distribution (OOD) test data, where inputs have larger sizes. In this work, we make an important observation: there are many different inputs for which an algorithm will perform certain intermediate computations identically. This insight allows us to develop data augmentation procedures that, given an algorithm's intermediate trajectory, produce inputs for which the target algorithm would have exactly the same next trajectory step. Then, we employ a causal framework to design a corresponding self-supervised objective, and we prove that it improves the OOD generalisation capabilities of the reasoner. We evaluate our method on the CLRS algorithmic reasoning benchmark, where we show up to 3times improvements on the OOD test data.
Randomized Positional Encodings Boost Length Generalization of Transformers
Transformers have impressive generalization capabilities on tasks with a fixed context length. However, they fail to generalize to sequences of arbitrary length, even for seemingly simple tasks such as duplicating a string. Moreover, simply training on longer sequences is inefficient due to the quadratic computation complexity of the global attention mechanism. In this work, we demonstrate that this failure mode is linked to positional encodings being out-of-distribution for longer sequences (even for relative encodings) and introduce a novel family of positional encodings that can overcome this problem. Concretely, our randomized positional encoding scheme simulates the positions of longer sequences and randomly selects an ordered subset to fit the sequence's length. Our large-scale empirical evaluation of 6000 models across 15 algorithmic reasoning tasks shows that our method allows Transformers to generalize to sequences of unseen length (increasing test accuracy by 12.0% on average).
GraphFSA: A Finite State Automaton Framework for Algorithmic Learning on Graphs
Many graph algorithms can be viewed as sets of rules that are iteratively applied, with the number of iterations dependent on the size and complexity of the input graph. Existing machine learning architectures often struggle to represent these algorithmic decisions as discrete state transitions. Therefore, we propose a novel framework: GraphFSA (Graph Finite State Automaton). GraphFSA is designed to learn a finite state automaton that runs on each node of a given graph. We test GraphFSA on cellular automata problems, showcasing its abilities in a straightforward algorithmic setting. For a comprehensive empirical evaluation of our framework, we create a diverse range of synthetic problems. As our main application, we then focus on learning more elaborate graph algorithms. Our findings suggest that GraphFSA exhibits strong generalization and extrapolation abilities, presenting an alternative approach to represent these algorithms.
Position Coupling: Improving Length Generalization of Arithmetic Transformers Using Task Structure
Even for simple arithmetic tasks like integer addition, it is challenging for Transformers to generalize to longer sequences than those encountered during training. To tackle this problem, we propose position coupling, a simple yet effective method that directly embeds the structure of the tasks into the positional encoding of a (decoder-only) Transformer. Taking a departure from the vanilla absolute position mechanism assigning unique position IDs to each of the tokens, we assign the same position IDs to two or more "relevant" tokens; for integer addition tasks, we regard digits of the same significance as in the same position. On the empirical side, we show that with the proposed position coupling, our models trained on 1 to 30-digit additions can generalize up to 200-digit additions (6.67x of the trained length). On the theoretical side, we prove that a 1-layer Transformer with coupled positions can solve the addition task involving exponentially many digits, whereas any 1-layer Transformer without positional information cannot entirely solve it. We also demonstrate that position coupling can be applied to other algorithmic tasks such as Nx2 multiplication and a two-dimensional task.
Transformers meet Neural Algorithmic Reasoners
Transformers have revolutionized machine learning with their simple yet effective architecture. Pre-training Transformers on massive text datasets from the Internet has led to unmatched generalization for natural language understanding (NLU) tasks. However, such language models remain fragile when tasked with algorithmic forms of reasoning, where computations must be precise and robust. To address this limitation, we propose a novel approach that combines the Transformer's language understanding with the robustness of graph neural network (GNN)-based neural algorithmic reasoners (NARs). Such NARs proved effective as generic solvers for algorithmic tasks, when specified in graph form. To make their embeddings accessible to a Transformer, we propose a hybrid architecture with a two-phase training procedure, allowing the tokens in the language model to cross-attend to the node embeddings from the NAR. We evaluate our resulting TransNAR model on CLRS-Text, the text-based version of the CLRS-30 benchmark, and demonstrate significant gains over Transformer-only models for algorithmic reasoning, both in and out of distribution.
Debunk the Myth of SFT Generalization
A prevailing view holds that supervised fine-tuning (SFT) memorizes training data and fails to generalize, whereas reinforcement learning (RL) attains broader robustness. We revisit this claim through a systematic evaluation on two decision-making benchmarks, Sokoban and General Points, and arrive at a different conclusion. We show that much of SFT's perceived failure stems from frozen-prompt artifacts: when trained on fixed instruction templates, SFT models cling to training semantics rather than adapting to new ones. Introducing prompt diversity during training breaks this shortcut and yields strong generalization to unseen instruction variants without harming in-distribution performance. Beyond instruction shifts, we ask whether SFT can generalize to strictly harder tasks. Here, chain-of-thought (CoT) supervision provides an algorithmic scaffold that markedly improves transfer to more difficult regimes, such as larger Sokoban grids with additional boxes and arithmetic with out-of-distribution values or five-card compositions that increase combinatorial complexity. Finally, combining prompt diversity with CoT achieves the best of both worlds: robust generalization across both instruction-variant and difficulty-variant settings, matching or surpassing RL baselines on our benchmarks while retaining SFT's simplicity and stability. These findings challenge the narrative that SFT is inherently inferior to RL and support a data-centric perspective: with appropriately curated demonstrations, vanilla SFT can generalize as strongly as RL. Code reproducing the results in the paper can be found at: https://github.com/XiaofengLin7/debunking-sft-generalization.
Universal Length Generalization with Turing Programs
Length generalization refers to the ability to extrapolate from short training sequences to long test sequences and is a challenge for current large language models. While prior work has proposed some architecture or data format changes to achieve length generalization, these proposals typically apply to a limited set of tasks. Building on prior scratchpad and Chain-of-Thought (CoT) techniques, we propose Turing Programs, a novel CoT strategy that decomposes an algorithmic task into steps mimicking the computation of a Turing Machine. This framework is both universal, as it can accommodate any algorithmic task, and simple, requiring only copying text from the context with small modifications. We show that by using Turing Programs, we obtain robust length generalization on a range of algorithmic tasks: addition, multiplication and in-context SGD. We then demonstrate that transformers achieve length generalization on random Turing Programs, suggesting that length generalization is possible for any algorithmic task. Finally, we theoretically prove that transformers can implement Turing Programs, constructing a simple RASP (Weiss et al.) program that simulates an arbitrary Turing machine.
Generalization in Deep Learning
This paper provides theoretical insights into why and how deep learning can generalize well, despite its large capacity, complexity, possible algorithmic instability, nonrobustness, and sharp minima, responding to an open question in the literature. We also discuss approaches to provide non-vacuous generalization guarantees for deep learning. Based on theoretical observations, we propose new open problems and discuss the limitations of our results.
Combinatorial Creativity: A New Frontier in Generalization Abilities
Artificial intelligence (AI) systems, and Large Language Models (LLMs) in particular, are increasingly employed for creative tasks like scientific idea generation, constituting a form of generalization from training data unaddressed by existing conceptual frameworks. Despite its similarities to compositional generalization (CG), combinatorial creativity (CC) is an open-ended ability. Instead of evaluating for accuracy or correctness against fixed targets, which would contradict the open-ended nature of CC, we propose a theoretical framework and algorithmic task for evaluating outputs by their degrees of novelty and utility. From here, we make several important empirical contributions: (1) We obtain the first insights into the scaling behavior of creativity for LLMs. (2) We discover that, for fixed compute budgets, there exist optimal model depths and widths for creative ability. (3) We find that the ideation-execution gap, whereby LLMs excel at generating novel scientific ideas but struggle to ensure their practical feasibility, may be explained by a more fundamental novelty-utility tradeoff characteristic of creativity algorithms in general. Importantly, this tradeoff remains persistent even at scale, casting doubt on the long-term creative potential of LLMs in their current form. Together, our conceptual framework and empirical findings provide a foundation for understanding and improving creativity in modern AI models, bridging the gap between human and machine intelligence.
On the Markov Property of Neural Algorithmic Reasoning: Analyses and Methods
Neural algorithmic reasoning is an emerging research direction that endows neural networks with the ability to mimic algorithmic executions step-by-step. A common paradigm in existing designs involves the use of historical embeddings in predicting the results of future execution steps. Our observation in this work is that such historical dependence intrinsically contradicts the Markov nature of algorithmic reasoning tasks. Based on this motivation, we present our ForgetNet, which does not use historical embeddings and thus is consistent with the Markov nature of the tasks. To address challenges in training ForgetNet at early stages, we further introduce G-ForgetNet, which uses a gating mechanism to allow for the selective integration of historical embeddings. Such an enhanced capability provides valuable computational pathways during the model's early training phase. Our extensive experiments, based on the CLRS-30 algorithmic reasoning benchmark, demonstrate that both ForgetNet and G-ForgetNet achieve better generalization capability than existing methods. Furthermore, we investigate the behavior of the gating mechanism, highlighting its degree of alignment with our intuitions and its effectiveness for robust performance.
Secrets of RLHF in Large Language Models Part II: Reward Modeling
Reinforcement Learning from Human Feedback (RLHF) has become a crucial technology for aligning language models with human values and intentions, enabling models to produce more helpful and harmless responses. Reward models are trained as proxies for human preferences to drive reinforcement learning optimization. While reward models are often considered central to achieving high performance, they face the following challenges in practical applications: (1) Incorrect and ambiguous preference pairs in the dataset may hinder the reward model from accurately capturing human intent. (2) Reward models trained on data from a specific distribution often struggle to generalize to examples outside that distribution and are not suitable for iterative RLHF training. In this report, we attempt to address these two issues. (1) From a data perspective, we propose a method to measure the strength of preferences within the data, based on a voting mechanism of multiple reward models. Experimental results confirm that data with varying preference strengths have different impacts on reward model performance. We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset and fully leverage high-quality preference data. (2) From an algorithmic standpoint, we introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses, thereby improving model generalization. Furthermore, we employ meta-learning to enable the reward model to maintain the ability to differentiate subtle differences in out-of-distribution samples, and this approach can be utilized for iterative RLHF optimization.
Discovering General Reinforcement Learning Algorithms with Adversarial Environment Design
The past decade has seen vast progress in deep reinforcement learning (RL) on the back of algorithms manually designed by human researchers. Recently, it has been shown that it is possible to meta-learn update rules, with the hope of discovering algorithms that can perform well on a wide range of RL tasks. Despite impressive initial results from algorithms such as Learned Policy Gradient (LPG), there remains a generalization gap when these algorithms are applied to unseen environments. In this work, we examine how characteristics of the meta-training distribution impact the generalization performance of these algorithms. Motivated by this analysis and building on ideas from Unsupervised Environment Design (UED), we propose a novel approach for automatically generating curricula to maximize the regret of a meta-learned optimizer, in addition to a novel approximation of regret, which we name algorithmic regret (AR). The result is our method, General RL Optimizers Obtained Via Environment Design (GROOVE). In a series of experiments, we show that GROOVE achieves superior generalization to LPG, and evaluate AR against baseline metrics from UED, identifying it as a critical component of environment design in this setting. We believe this approach is a step towards the discovery of truly general RL algorithms, capable of solving a wide range of real-world environments.
On the Measure of Intelligence
To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.
Understanding Gradient Regularization in Deep Learning: Efficient Finite-Difference Computation and Implicit Bias
Gradient regularization (GR) is a method that penalizes the gradient norm of the training loss during training. While some studies have reported that GR can improve generalization performance, little attention has been paid to it from the algorithmic perspective, that is, the algorithms of GR that efficiently improve the performance. In this study, we first reveal that a specific finite-difference computation, composed of both gradient ascent and descent steps, reduces the computational cost of GR. Next, we show that the finite-difference computation also works better in the sense of generalization performance. We theoretically analyze a solvable model, a diagonal linear network, and clarify that GR has a desirable implicit bias to so-called rich regime and finite-difference computation strengthens this bias. Furthermore, finite-difference GR is closely related to some other algorithms based on iterative ascent and descent steps for exploring flat minima. In particular, we reveal that the flooding method can perform finite-difference GR in an implicit way. Thus, this work broadens our understanding of GR for both practice and theory.
Transforming Location Retrieval at Airbnb: A Journey from Heuristics to Reinforcement Learning
The Airbnb search system grapples with many unique challenges as it continues to evolve. We oversee a marketplace that is nuanced by geography, diversity of homes, and guests with a variety of preferences. Crafting an efficient search system that can accommodate diverse guest needs, while showcasing relevant homes lies at the heart of Airbnb's success. Airbnb search has many challenges that parallel other recommendation and search systems but it has a unique information retrieval problem, upstream of ranking, called location retrieval. It requires defining a topological map area that is relevant to the searched query for homes listing retrieval. The purpose of this paper is to demonstrate the methodology, challenges, and impact of building a machine learning based location retrieval product from the ground up. Despite the lack of suitable, prevalent machine learning based approaches, we tackle cold start, generalization, differentiation and algorithmic bias. We detail the efficacy of heuristics, statistics, machine learning, and reinforcement learning approaches to solve these challenges, particularly for systems that are often unexplored by current literature.
FairDomain: Achieving Fairness in Cross-Domain Medical Image Segmentation and Classification
Addressing fairness in artificial intelligence (AI), particularly in medical AI, is crucial for ensuring equitable healthcare outcomes. Recent efforts to enhance fairness have introduced new methodologies and datasets in medical AI. However, the fairness issue under the setting of domain transfer is almost unexplored, while it is common that clinics rely on different imaging technologies (e.g., different retinal imaging modalities) for patient diagnosis. This paper presents FairDomain, a pioneering systemic study into algorithmic fairness under domain shifts, employing state-of-the-art domain adaptation (DA) and generalization (DG) algorithms for both medical segmentation and classification tasks to understand how biases are transferred between different domains. We also introduce a novel plug-and-play fair identity attention (FIA) module that adapts to various DA and DG algorithms to improve fairness by using self-attention to adjust feature importance based on demographic attributes. Additionally, we curate the first fairness-focused dataset with two paired imaging modalities for the same patient cohort on medical segmentation and classification tasks, to rigorously assess fairness in domain-shift scenarios. Excluding the confounding impact of demographic distribution variation between source and target domains will allow clearer quantification of the performance of domain transfer models. Our extensive evaluations reveal that the proposed FIA significantly enhances both model performance accounted for fairness across all domain shift settings (i.e., DA and DG) with respect to different demographics, which outperforms existing methods on both segmentation and classification. The code and data can be accessed at https://ophai.hms.harvard.edu/datasets/harvard-fairdomain20k.
HARK Side of Deep Learning -- From Grad Student Descent to Automated Machine Learning
Recent advancements in machine learning research, i.e., deep learning, introduced methods that excel conventional algorithms as well as humans in several complex tasks, ranging from detection of objects in images and speech recognition to playing difficult strategic games. However, the current methodology of machine learning research and consequently, implementations of the real-world applications of such algorithms, seems to have a recurring HARKing (Hypothesizing After the Results are Known) issue. In this work, we elaborate on the algorithmic, economic and social reasons and consequences of this phenomenon. We present examples from current common practices of conducting machine learning research (e.g. avoidance of reporting negative results) and failure of generalization ability of the proposed algorithms and datasets in actual real-life usage. Furthermore, a potential future trajectory of machine learning research and development from the perspective of accountable, unbiased, ethical and privacy-aware algorithmic decision making is discussed. We would like to emphasize that with this discussion we neither claim to provide an exhaustive argumentation nor blame any specific institution or individual on the raised issues. This is simply a discussion put forth by us, insiders of the machine learning field, reflecting on us.
Green Screen Augmentation Enables Scene Generalisation in Robotic Manipulation
Generalising vision-based manipulation policies to novel environments remains a challenging area with limited exploration. Current practices involve collecting data in one location, training imitation learning or reinforcement learning policies with this data, and deploying the policy in the same location. However, this approach lacks scalability as it necessitates data collection in multiple locations for each task. This paper proposes a novel approach where data is collected in a location predominantly featuring green screens. We introduce Green-screen Augmentation (GreenAug), employing a chroma key algorithm to overlay background textures onto a green screen. Through extensive real-world empirical studies with over 850 training demonstrations and 8.2k evaluation episodes, we demonstrate that GreenAug surpasses no augmentation, standard computer vision augmentation, and prior generative augmentation methods in performance. While no algorithmic novelties are claimed, our paper advocates for a fundamental shift in data collection practices. We propose that real-world demonstrations in future research should utilise green screens, followed by the application of GreenAug. We believe GreenAug unlocks policy generalisation to visually distinct novel locations, addressing the current scene generalisation limitations in robot learning.
Transformers as Algorithms: Generalization and Stability in In-context Learning
In-context learning (ICL) is a type of prompting where a transformer model operates on a sequence of (input, output) examples and performs inference on-the-fly. In this work, we formalize in-context learning as an algorithm learning problem where a transformer model implicitly constructs a hypothesis function at inference-time. We first explore the statistical aspects of this abstraction through the lens of multitask learning: We obtain generalization bounds for ICL when the input prompt is (1) a sequence of i.i.d. (input, label) pairs or (2) a trajectory arising from a dynamical system. The crux of our analysis is relating the excess risk to the stability of the algorithm implemented by the transformer. We characterize when transformer/attention architecture provably obeys the stability condition and also provide empirical verification. For generalization on unseen tasks, we identify an inductive bias phenomenon in which the transfer learning risk is governed by the task complexity and the number of MTL tasks in a highly predictable manner. Finally, we provide numerical evaluations that (1) demonstrate transformers can indeed implement near-optimal algorithms on classical regression problems with i.i.d. and dynamic data, (2) provide insights on stability, and (3) verify our theoretical predictions.
