- Advancing Drug Development Through Strategic Cell Line and Compound Selection Using Drug Response Profiles Early identification of sensitive cancer cell lines is essential for accelerating biomarker discovery and elucidating drug mechanism of action. Given the efficiency and low cost of small-scale drug screens relative to extensive omics profiling, we compared drug-response panel (DRP) descriptors against omics features for predictive capacity using gradient boosting tree models across the GDSC and CCLE drug response datasets. DRP descriptors consistently outperformed omics data across key performance metrics, with variable performance across different drugs. Using complementary explainability approaches, we confirmed known MAPK-inhibitor sensitivity signatures, and identified novel potential biomarker candidates for MEK1/2 and BTK/MNK inhibitors. Lastly, to demonstrate the utility of this approach in distinguishing phenotypes, we applied our models to the breast cancer line MCF7 versus the non-tumorigenic MCF10A, and successfully identified compounds that selectively inhibit MCF7 while sparing the non-tumorigenic MCF10A. This methodology, developed using focused drug and cell line panels, supports early-stage drug development by facilitating rational cell line selection and compound prioritisation, enabling more efficient biomarker identification and candidate assessment. 4 authors · Oct 22, 2025
- HEST-1k: A Dataset for Spatial Transcriptomics and Histology Image Analysis Spatial transcriptomics (ST) enables interrogating the molecular composition of tissue with ever-increasing resolution, depth, and sensitivity. However, costs, rapidly evolving technology, and lack of standards have constrained computational methods in ST to narrow tasks and small cohorts. In addition, the underlying tissue morphology as reflected by H&E-stained whole slide images (WSIs) encodes rich information often overlooked in ST studies. Here, we introduce HEST-1k, a collection of 1,108 spatial transcriptomic profiles, each linked to a WSI and metadata. HEST-1k was assembled using HEST-Library from 131 public and internal cohorts encompassing 25 organs, two species (Homo Sapiens and Mus Musculus), and 320 cancer samples from 25 cancer types. HEST-1k processing enabled the identification of 1.5 million expression--morphology pairs and 60 million nuclei. HEST-1k is tested on three use cases: (1) benchmarking foundation models for histopathology (HEST-Benchmark), (2) biomarker identification, and (3) multimodal representation learning. HEST-1k, HEST-Library, and HEST-Benchmark can be freely accessed via https://github.com/mahmoodlab/hest. 11 authors · Jun 23, 2024
- Multimodal Masked Autoencoder Pre-training for 3D MRI-Based Brain Tumor Analysis with Missing Modalities Multimodal magnetic resonance imaging (MRI) constitutes the first line of investigation for clinicians in the care of brain tumors, providing crucial insights for surgery planning, treatment monitoring, and biomarker identification. Pre-training on large datasets have been shown to help models learn transferable representations and adapt with minimal labeled data. This behavior is especially valuable in medical imaging, where annotations are often scarce. However, applying this paradigm to multimodal medical data introduces a challenge: most existing approaches assume that all imaging modalities are available during both pre-training and fine-tuning. In practice, missing modalities often occur due to acquisition issues, specialist unavailability, or specific experimental designs on small in-house datasets. Consequently, a common approach involves training a separate model for each desired modality combination, making the process both resource-intensive and impractical for clinical use. Therefore, we introduce BM-MAE, a masked image modeling pre-training strategy tailored for multimodal MRI data. The same pre-trained model seamlessly adapts to any combination of available modalities, extracting rich representations that capture both intra- and inter-modal information. This allows fine-tuning on any subset of modalities without requiring architectural changes, while still benefiting from a model pre-trained on the full set of modalities. Extensive experiments show that the proposed pre-training strategy outperforms or remains competitive with baselines that require separate pre-training for each modality subset, while substantially surpassing training from scratch on several downstream tasks. Additionally, it can quickly and efficiently reconstruct missing modalities, highlighting its practical value. Code and trained models are available at: https://github.com/Lucas-rbnt/BM-MAE 3 authors · May 1, 2025
- SpecTUS: Spectral Translator for Unknown Structures annotation from EI-MS spectra Compound identification and structure annotation from mass spectra is a well-established task widely applied in drug detection, criminal forensics, small molecule biomarker discovery and chemical engineering. We propose SpecTUS: Spectral Translator for Unknown Structures, a deep neural model that addresses the task of structural annotation of small molecules from low-resolution gas chromatography electron ionization mass spectra (GC-EI-MS). Our model analyzes the spectra in de novo manner -- a direct translation from the spectra into 2D-structural representation. Our approach is particularly useful for analyzing compounds unavailable in spectral libraries. In a rigorous evaluation of our model on the novel structure annotation task across different libraries, we outperformed standard database search techniques by a wide margin. On a held-out testing set, including 28267 spectra from the NIST database, we show that our model's single suggestion perfectly reconstructs 43\% of the subset's compounds. This single suggestion is strictly better than the candidate of the database hybrid search (common method among practitioners) in 76\% of cases. In a~still affordable scenario of~10 suggestions, perfect reconstruction is achieved in 65\%, and 84\% are better than the hybrid search. 4 authors · Feb 7, 2025
1 PathOrchestra: A Comprehensive Foundation Model for Computational Pathology with Over 100 Diverse Clinical-Grade Tasks The complexity and variability inherent in high-resolution pathological images present significant challenges in computational pathology. While pathology foundation models leveraging AI have catalyzed transformative advancements, their development demands large-scale datasets, considerable storage capacity, and substantial computational resources. Furthermore, ensuring their clinical applicability and generalizability requires rigorous validation across a broad spectrum of clinical tasks. Here, we present PathOrchestra, a versatile pathology foundation model trained via self-supervised learning on a dataset comprising 300K pathological slides from 20 tissue and organ types across multiple centers. The model was rigorously evaluated on 112 clinical tasks using a combination of 61 private and 51 public datasets. These tasks encompass digital slide preprocessing, pan-cancer classification, lesion identification, multi-cancer subtype classification, biomarker assessment, gene expression prediction, and the generation of structured reports. PathOrchestra demonstrated exceptional performance across 27,755 WSIs and 9,415,729 ROIs, achieving over 0.950 accuracy in 47 tasks, including pan-cancer classification across various organs, lymphoma subtype diagnosis, and bladder cancer screening. Notably, it is the first model to generate structured reports for high-incidence colorectal cancer and diagnostically complex lymphoma-areas that are infrequently addressed by foundational models but hold immense clinical potential. Overall, PathOrchestra exemplifies the feasibility and efficacy of a large-scale, self-supervised pathology foundation model, validated across a broad range of clinical-grade tasks. Its high accuracy and reduced reliance on extensive data annotation underline its potential for clinical integration, offering a pathway toward more efficient and high-quality medical services. 27 authors · Mar 31, 2025