new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 8

BioMoDiffuse: Physics-Guided Biomechanical Diffusion for Controllable and Authentic Human Motion Synthesis

Human motion generation holds significant promise in fields such as animation, film production, and robotics. However, existing methods often fail to produce physically plausible movements that adhere to biomechanical principles. While recent autoregressive and diffusion models have improved visual quality, they frequently overlook essential biodynamic features, such as muscle activation patterns and joint coordination, leading to motions that either violate physical laws or lack controllability. This paper introduces BioMoDiffuse, a novel biomechanics-aware diffusion framework that addresses these limitations. It features three key innovations: (1) A lightweight biodynamic network that integrates muscle electromyography (EMG) signals and kinematic features with acceleration constraints, (2) A physics-guided diffusion process that incorporates real-time biomechanical verification via modified Euler-Lagrange equations, and (3) A decoupled control mechanism that allows independent regulation of motion speed and semantic context. We also propose a set of comprehensive evaluation protocols that combines traditional metrics (FID, R-precision, etc.) with new biomechanical criteria (smoothness, foot sliding, floating, etc.). Our approach bridges the gap between data-driven motion synthesis and biomechanical authenticity, establishing new benchmarks for physically accurate motion generation.

  • 3 authors
·
Mar 8, 2025

WAY: Estimation of Vessel Destination in Worldwide AIS Trajectory

The Automatic Identification System (AIS) enables data-driven maritime surveillance but suffers from reliability issues and irregular intervals. We address vessel destination estimation using global-scope AIS data by proposing a differentiated approach that recasts long port-to-port trajectories as a nested sequence structure. Using spatial grids, this method mitigates spatio-temporal bias while preserving detailed resolution. We introduce a novel deep learning architecture, WAY, designed to process these reformulated trajectories for long-term destination estimation days to weeks in advance. WAY comprises a trajectory representation layer and Channel-Aggregative Sequential Processing (CASP) blocks. The representation layer generates multi-channel vector sequences from kinematic and non-kinematic features. CASP blocks utilize multi-headed channel- and self-attention for aggregation and sequential information delivery. Additionally, we propose a task-specialized Gradient Dropout (GD) technique to enable many-to-many training on single labels, preventing biased feedback surges by stochastically blocking gradient flow based on sample length. Experiments on 5-year AIS data demonstrate WAY's superiority over conventional spatial grid-based approaches regardless of trajectory progression. Results further confirm that adopting GD leads to performance gains. Finally, we explore WAY's potential for real-world application through multitask learning for ETA estimation.

  • 5 authors
·
Dec 15, 2025 2

A Third-Order Gaussian Process Trajectory Representation Framework with Closed-Form Kinematics for Continuous-Time Motion Estimation

In this paper, we propose a third-order, i.e., white-noise-on-jerk, Gaussian Process (GP) Trajectory Representation (TR) framework for continuous-time (CT) motion estimation (ME) tasks. Our framework features a unified trajectory representation that encapsulates the kinematic models of both SO(3)timesR^3 and SE(3) pose representations. This encapsulation strategy allows users to use the same implementation of measurement-based factors for either choice of pose representation, which facilitates experimentation and comparison to achieve the best model for the ME task. In addition, unique to our framework, we derive the kinematic models with the closed-form temporal derivatives of the local variable of SO(3) and SE(3), which so far has only been approximated based on the Taylor expansion in the literature. Our experiments show that these kinematic models can improve the estimation accuracy in high-speed scenarios. All analytical Jacobians of the interpolated states with respect to the support states of the trajectory representation, as well as the motion prior factors, are also provided for accelerated Gauss-Newton (GN) optimization. Our experiments demonstrate the efficacy and efficiency of the framework in various motion estimation tasks such as localization, calibration, and odometry, facilitating fast prototyping for ME researchers. We release the source code for the benefit of the community. Our project is available at https://github.com/brytsknguyen/gptr.

  • 8 authors
·
Oct 30, 2024

Cough-E: A multimodal, privacy-preserving cough detection algorithm for the edge

Continuous cough monitors can greatly aid doctors in home monitoring and treatment of respiratory diseases. Although many algorithms have been proposed, they still face limitations in data privacy and short-term monitoring. Edge-AI offers a promising solution by processing privacy-sensitive data near the source, but challenges arise in deploying resource-intensive algorithms on constrained devices. From a suitable selection of audio and kinematic signals, our methodology aims at the optimal selection of features via Recursive Feature Elimination with Cross-Validation (RFECV), which exploits the explainability of the selected XGB model. Additionally, it analyzes the use of Mel spectrogram features, instead of the more common MFCC. Moreover, a set of hyperparameters for a multimodal implementation of the classifier is explored. Finally, it evaluates the performance based on clinically relevant event-based metrics. We apply our methodology to develop Cough-E, an energy-efficient, multimodal and edge AI cough detection algorithm. It exploits audio and kinematic data in two distinct classifiers, jointly cooperating for a balanced energy and performance trade-off. We demonstrate that our algorithm can be executed in real-time on an ARM Cortex M33 microcontroller. Cough-E achieves a 70.56\% energy saving when compared to the audio-only approach, at the cost of a 1.26\% relative performance drop, resulting in a 0.78 F1-score. Both Cough-E and the edge-aware model optimization methodology are publicly available as open-source code. This approach demonstrates the benefits of the proposed hardware-aware methodology to enable privacy-preserving cough monitors on the edge, paving the way to efficient cough monitoring.

  • 7 authors
·
Oct 31, 2024