- Counter-Strike Deathmatch with Large-Scale Behavioural Cloning This paper describes an AI agent that plays the popular first-person-shooter (FPS) video game `Counter-Strike; Global Offensive' (CSGO) from pixel input. The agent, a deep neural network, matches the performance of the medium difficulty built-in AI on the deathmatch game mode, whilst adopting a humanlike play style. Unlike much prior work in games, no API is available for CSGO, so algorithms must train and run in real-time. This limits the quantity of on-policy data that can be generated, precluding many reinforcement learning algorithms. Our solution uses behavioural cloning - training on a large noisy dataset scraped from human play on online servers (4 million frames, comparable in size to ImageNet), and a smaller dataset of high-quality expert demonstrations. This scale is an order of magnitude larger than prior work on imitation learning in FPS games. 2 authors · Apr 9, 2021
- Alice Benchmarks: Connecting Real World Re-Identification with the Synthetic For object re-identification (re-ID), learning from synthetic data has become a promising strategy to cheaply acquire large-scale annotated datasets and effective models, with few privacy concerns. Many interesting research problems arise from this strategy, e.g., how to reduce the domain gap between synthetic source and real-world target. To facilitate developing more new approaches in learning from synthetic data, we introduce the Alice benchmarks, large-scale datasets providing benchmarks as well as evaluation protocols to the research community. Within the Alice benchmarks, two object re-ID tasks are offered: person and vehicle re-ID. We collected and annotated two challenging real-world target datasets: AlicePerson and AliceVehicle, captured under various illuminations, image resolutions, etc. As an important feature of our real target, the clusterability of its training set is not manually guaranteed to make it closer to a real domain adaptation test scenario. Correspondingly, we reuse existing PersonX and VehicleX as synthetic source domains. The primary goal is to train models from synthetic data that can work effectively in the real world. In this paper, we detail the settings of Alice benchmarks, provide an analysis of existing commonly-used domain adaptation methods, and discuss some interesting future directions. An online server has been set up for the community to evaluate methods conveniently and fairly. Datasets and the online server details are available at https://sites.google.com/view/alice-benchmarks. 5 authors · Oct 6, 2023
- Andes: Defining and Enhancing Quality-of-Experience in LLM-Based Text Streaming Services The advent of large language models (LLMs) has transformed text-based services, enabling capabilities ranging from real-time translation to AI-driven chatbots. However, existing serving systems primarily focus on optimizing server-side aggregate metrics like token generation throughput, ignoring individual user experience with streamed text. As a result, under high and/or bursty load, a significant number of users can receive unfavorable service quality or poor Quality-of-Experience (QoE). In this paper, we first formally define QoE of text streaming services, where text is delivered incrementally and interactively to users, by considering the end-to-end token delivery process throughout the entire interaction with the user. Thereafter, we propose Andes, a QoE-aware serving system that enhances user experience for LLM-enabled text streaming services. At its core, Andes strategically allocates contended GPU resources among multiple requests over time to optimize their QoE. Our evaluations demonstrate that, compared to the state-of-the-art LLM serving systems like vLLM, Andes improves the average QoE by up to 3.2times under high request rate, or alternatively, it attains up to 1.6times higher request rate while preserving high QoE. 6 authors · Apr 24, 2024