new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 5

Relightable 3D Gaussian: Real-time Point Cloud Relighting with BRDF Decomposition and Ray Tracing

We present a novel differentiable point-based rendering framework for material and lighting decomposition from multi-view images, enabling editing, ray-tracing, and real-time relighting of the 3D point cloud. Specifically, a 3D scene is represented as a set of relightable 3D Gaussian points, where each point is additionally associated with a normal direction, BRDF parameters, and incident lights from different directions. To achieve robust lighting estimation, we further divide incident lights of each point into global and local components, as well as view-dependent visibilities. The 3D scene is optimized through the 3D Gaussian Splatting technique while BRDF and lighting are decomposed by physically-based differentiable rendering. Moreover, we introduce an innovative point-based ray-tracing approach based on the bounding volume hierarchy for efficient visibility baking, enabling real-time rendering and relighting of 3D Gaussian points with accurate shadow effects. Extensive experiments demonstrate improved BRDF estimation and novel view rendering results compared to state-of-the-art material estimation approaches. Our framework showcases the potential to revolutionize the mesh-based graphics pipeline with a relightable, traceable, and editable rendering pipeline solely based on point cloud. Project page:https://nju-3dv.github.io/projects/Relightable3DGaussian/.

  • 7 authors
·
Nov 27, 2023

ADOP: Approximate Differentiable One-Pixel Point Rendering

In this paper we present ADOP, a novel point-based, differentiable neural rendering pipeline. Like other neural renderers, our system takes as input calibrated camera images and a proxy geometry of the scene, in our case a point cloud. To generate a novel view, the point cloud is rasterized with learned feature vectors as colors and a deep neural network fills the remaining holes and shades each output pixel. The rasterizer renders points as one-pixel splats, which makes it very fast and allows us to compute gradients with respect to all relevant input parameters efficiently. Furthermore, our pipeline contains a fully differentiable physically-based photometric camera model, including exposure, white balance, and a camera response function. Following the idea of inverse rendering, we use our renderer to refine its input in order to reduce inconsistencies and optimize the quality of its output. In particular, we can optimize structural parameters like the camera pose, lens distortions, point positions and features, and a neural environment map, but also photometric parameters like camera response function, vignetting, and per-image exposure and white balance. Because our pipeline includes photometric parameters, e.g.~exposure and camera response function, our system can smoothly handle input images with varying exposure and white balance, and generates high-dynamic range output. We show that due to the improved input, we can achieve high render quality, also for difficult input, e.g. with imperfect camera calibrations, inaccurate proxy geometry, or varying exposure. As a result, a simpler and thus faster deep neural network is sufficient for reconstruction. In combination with the fast point rasterization, ADOP achieves real-time rendering rates even for models with well over 100M points. https://github.com/darglein/ADOP

  • 3 authors
·
Oct 13, 2021