new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 6

Automating Human Tutor-Style Programming Feedback: Leveraging GPT-4 Tutor Model for Hint Generation and GPT-3.5 Student Model for Hint Validation

Generative AI and large language models hold great promise in enhancing programming education by automatically generating individualized feedback for students. We investigate the role of generative AI models in providing human tutor-style programming hints to help students resolve errors in their buggy programs. Recent works have benchmarked state-of-the-art models for various feedback generation scenarios; however, their overall quality is still inferior to human tutors and not yet ready for real-world deployment. In this paper, we seek to push the limits of generative AI models toward providing high-quality programming hints and develop a novel technique, GPT4Hints-GPT3.5Val. As a first step, our technique leverages GPT-4 as a ``tutor'' model to generate hints -- it boosts the generative quality by using symbolic information of failing test cases and fixes in prompts. As a next step, our technique leverages GPT-3.5, a weaker model, as a ``student'' model to further validate the hint quality -- it performs an automatic quality validation by simulating the potential utility of providing this feedback. We show the efficacy of our technique via extensive evaluation using three real-world datasets of Python programs covering a variety of concepts ranging from basic algorithms to regular expressions and data analysis using pandas library.

  • 8 authors
·
Oct 5, 2023

CREF: An LLM-based Conversational Software Repair Framework for Programming Tutors

Program repair techniques offer cost-saving benefits for debugging within software development and programming education scenarios. With the proven effectiveness of Large Language Models (LLMs) in code-related tasks, researchers have explored their potential for program repair. However, it is crucial to recognize that existing repair benchmarks may have influenced LLM training data, potentially causing data leakage. To evaluate LLMs' realistic repair capabilities, (1) we introduce an extensive, non-crawled benchmark, referred to as TutorCode, comprising 1,239 C++ defect codes and associated information such as tutor guidance, solution description, failing test cases, and the corrected code. Our work assesses the repair performance of 12 LLMs on TutorCode, measuring repair correctness (TOP-5 and AVG-5) and patch precision (RPSR). (2) We then provide a comprehensive investigation into which types of extra information can help LLMs improve their performance in repairing defects. Among these types, tutor guidance was found to be the most effective information in enhancing LLM repair capabilities. To fully harness LLMs' conversational capabilities and the benefits of augmented information, (3) we introduce a novel conversational semi-automatic repair framework CREF assisting human tutor. It demonstrates a remarkable AVG-5 improvement of 17.2%-24.6% compared to the baseline, achieving an impressive AVG-5 of 76.6% when utilizing GPT-4. These results highlight the potential for enhancing LLMs' repair capabilities through interactions with tutors and historical conversations involving incorrect responses. The successful application of CREF in a real-world educational setting demonstrates its effectiveness in reducing tutors' workload and improving students' learning experience, while also showcasing its promise for facilitating other software engineering tasks, such as code review.

  • 8 authors
·
Jun 19, 2024

Generating High-Precision Feedback for Programming Syntax Errors using Large Language Models

Large language models (LLMs), such as Codex, hold great promise in enhancing programming education by automatically generating feedback for students. We investigate using LLMs to generate feedback for fixing syntax errors in Python programs, a key scenario in introductory programming. More concretely, given a student's buggy program, our goal is to generate feedback comprising a fixed program along with a natural language explanation describing the errors/fixes, inspired by how a human tutor would give feedback. While using LLMs is promising, the critical challenge is to ensure high precision in the generated feedback, which is imperative before deploying such technology in classrooms. The main research question we study is: Can we develop LLMs-based feedback generation techniques with a tunable precision parameter, giving educators quality control over the feedback that students receive? To this end, we introduce PyFiXV, our technique to generate high-precision feedback powered by Codex. The key idea behind PyFiXV is to use a novel run-time validation mechanism to decide whether the generated feedback is suitable for sharing with the student; notably, this validation mechanism also provides a precision knob to educators. We perform an extensive evaluation using two real-world datasets of Python programs with syntax errors and show the efficacy of PyFiXV in generating high-precision feedback.

  • 7 authors
·
Jan 24, 2023

Exploring Automated Code Evaluation Systems and Resources for Code Analysis: A Comprehensive Survey

The automated code evaluation system (AES) is mainly designed to reliably assess user-submitted code. Due to their extensive range of applications and the accumulation of valuable resources, AESs are becoming increasingly popular. Research on the application of AES and their real-world resource exploration for diverse coding tasks is still lacking. In this study, we conducted a comprehensive survey on AESs and their resources. This survey explores the application areas of AESs, available resources, and resource utilization for coding tasks. AESs are categorized into programming contests, programming learning and education, recruitment, online compilers, and additional modules, depending on their application. We explore the available datasets and other resources of these systems for research, analysis, and coding tasks. Moreover, we provide an overview of machine learning-driven coding tasks, such as bug detection, code review, comprehension, refactoring, search, representation, and repair. These tasks are performed using real-life datasets. In addition, we briefly discuss the Aizu Online Judge platform as a real example of an AES from the perspectives of system design (hardware and software), operation (competition and education), and research. This is due to the scalability of the AOJ platform (programming education, competitions, and practice), open internal features (hardware and software), attention from the research community, open source data (e.g., solution codes and submission documents), and transparency. We also analyze the overall performance of this system and the perceived challenges over the years.

  • 4 authors
·
Jul 8, 2023

Large Language Models (GPT) Struggle to Answer Multiple-Choice Questions about Code

We analyzed effectiveness of three generative pre-trained transformer (GPT) models in answering multiple-choice question (MCQ) assessments, often involving short snippets of code, from introductory and intermediate programming courses at the postsecondary level. This emerging technology stirs countless discussions of its potential uses (e.g., exercise generation, code explanation) as well as misuses in programming education (e.g., cheating). However, the capabilities of GPT models and their limitations to reason about and/or analyze code in educational settings have been under-explored. We evaluated several OpenAI's GPT models on formative and summative MCQ assessments from three Python courses (530 questions). We found that MCQs containing code snippets are not answered as successfully as those that only contain natural language. While questions requiring to fill-in a blank in the code or completing a natural language statement about the snippet are handled rather successfully, MCQs that require analysis and/or reasoning about the code (e.g., what is true/false about the snippet, or what is its output) appear to be the most challenging. These findings can be leveraged by educators to adapt their instructional practices and assessments in programming courses, so that GPT becomes a valuable assistant for a learner as opposed to a source of confusion and/or potential hindrance in the learning process.

  • 4 authors
·
Mar 9, 2023

The AI Companion in Education: Analyzing the Pedagogical Potential of ChatGPT in Computer Science and Engineering

Artificial Intelligence (AI), with ChatGPT as a prominent example, has recently taken center stage in various domains including higher education, particularly in Computer Science and Engineering (CSE). The AI revolution brings both convenience and controversy, offering substantial benefits while lacking formal guidance on their application. The primary objective of this work is to comprehensively analyze the pedagogical potential of ChatGPT in CSE education, understanding its strengths and limitations from the perspectives of educators and learners. We employ a systematic approach, creating a diverse range of educational practice problems within CSE field, focusing on various subjects such as data science, programming, AI, machine learning, networks, and more. According to our examinations, certain question types, like conceptual knowledge queries, typically do not pose significant challenges to ChatGPT, and thus, are excluded from our analysis. Alternatively, we focus our efforts on developing more in-depth and personalized questions and project-based tasks. These questions are presented to ChatGPT, followed by interactions to assess its effectiveness in delivering complete and meaningful responses. To this end, we propose a comprehensive five-factor reliability analysis framework to evaluate the responses. This assessment aims to identify when ChatGPT excels and when it faces challenges. Our study concludes with a correlation analysis, delving into the relationships among subjects, task types, and limiting factors. This analysis offers valuable insights to enhance ChatGPT's utility in CSE education, providing guidance to educators and students regarding its reliability and efficacy.

  • 6 authors
·
Apr 23, 2024

ELMES: An Automated Framework for Evaluating Large Language Models in Educational Scenarios

The emergence of Large Language Models (LLMs) presents transformative opportunities for education, generating numerous novel application scenarios. However, significant challenges remain: evaluation metrics vary substantially across different educational scenarios, while many emerging scenarios lack appropriate assessment metrics. Current benchmarks predominantly measure general intelligence rather than pedagogical capabilities. To address this gap, we introduce ELMES, an open-source automated evaluation framework specifically designed for assessing LLMs in educational settings. ELMES features a modular architecture that enables researchers to create dynamic, multi-agent dialogues through simple configuration files, facilitating flexible scenario design without requiring extensive programming expertise. The framework incorporates a hybrid evaluation engine that objectively quantifies traditionally subjective pedagogical metrics using an LLM-as-a-Judge methodology. We conduct systematic benchmarking of state-of-the-art LLMs across four critical educational scenarios: Knowledge Point Explanation, Guided Problem-Solving Teaching, Interdisciplinary Lesson Plan Generation, and Contextualized Question Generation, employing fine-grained metrics developed in collaboration with education specialists. Our results demonstrate distinct capability distributions among models, revealing context-specific strengths and limitations. ELMES provides educators and researchers with an accessible evaluation framework that significantly reduces adaptation barriers for diverse educational applications while advancing the practical implementation of LLMs in pedagogy. The framework is publicly available at https://github.com/sii-research/elmes.git.

  • 12 authors
·
Jul 27, 2025

What Should Data Science Education Do with Large Language Models?

The rapid advances of large language models (LLMs), such as ChatGPT, are revolutionizing data science and statistics. These state-of-the-art tools can streamline complex processes. As a result, it reshapes the role of data scientists. We argue that LLMs are transforming the responsibilities of data scientists, shifting their focus from hands-on coding, data-wrangling and conducting standard analyses to assessing and managing analyses performed by these automated AIs. This evolution of roles is reminiscent of the transition from a software engineer to a product manager. We illustrate this transition with concrete data science case studies using LLMs in this paper. These developments necessitate a meaningful evolution in data science education. Pedagogy must now place greater emphasis on cultivating diverse skillsets among students, such as LLM-informed creativity, critical thinking, AI-guided programming. LLMs can also play a significant role in the classroom as interactive teaching and learning tools, contributing to personalized education. This paper discusses the opportunities, resources and open challenges for each of these directions. As with any transformative technology, integrating LLMs into education calls for careful consideration. While LLMs can perform repetitive tasks efficiently, it's crucial to remember that their role is to supplement human intelligence and creativity, not to replace it. Therefore, the new era of data science education should balance the benefits of LLMs while fostering complementary human expertise and innovations. In conclusion, the rise of LLMs heralds a transformative period for data science and its education. This paper seeks to shed light on the emerging trends, potential opportunities, and challenges accompanying this paradigm shift, hoping to spark further discourse and investigation into this exciting, uncharted territory.

  • 4 authors
·
Jul 6, 2023