new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 26

Camera-Driven Representation Learning for Unsupervised Domain Adaptive Person Re-identification

We present a novel unsupervised domain adaption method for person re-identification (reID) that generalizes a model trained on a labeled source domain to an unlabeled target domain. We introduce a camera-driven curriculum learning (CaCL) framework that leverages camera labels of person images to transfer knowledge from source to target domains progressively. To this end, we divide target domain dataset into multiple subsets based on the camera labels, and initially train our model with a single subset (i.e., images captured by a single camera). We then gradually exploit more subsets for training, according to a curriculum sequence obtained with a camera-driven scheduling rule. The scheduler considers maximum mean discrepancies (MMD) between each subset and the source domain dataset, such that the subset closer to the source domain is exploited earlier within the curriculum. For each curriculum sequence, we generate pseudo labels of person images in a target domain to train a reID model in a supervised way. We have observed that the pseudo labels are highly biased toward cameras, suggesting that person images obtained from the same camera are likely to have the same pseudo labels, even for different IDs. To address the camera bias problem, we also introduce a camera-diversity (CD) loss encouraging person images of the same pseudo label, but captured across various cameras, to involve more for discriminative feature learning, providing person representations robust to inter-camera variations. Experimental results on standard benchmarks, including real-to-real and synthetic-to-real scenarios, demonstrate the effectiveness of our framework.

  • 6 authors
·
Aug 23, 2023

Language-Driven Representation Learning for Robotics

Recent work in visual representation learning for robotics demonstrates the viability of learning from large video datasets of humans performing everyday tasks. Leveraging methods such as masked autoencoding and contrastive learning, these representations exhibit strong transfer to policy learning for visuomotor control. But, robot learning encompasses a diverse set of problems beyond control including grasp affordance prediction, language-conditioned imitation learning, and intent scoring for human-robot collaboration, amongst others. First, we demonstrate that existing representations yield inconsistent results across these tasks: masked autoencoding approaches pick up on low-level spatial features at the cost of high-level semantics, while contrastive learning approaches capture the opposite. We then introduce Voltron, a framework for language-driven representation learning from human videos and associated captions. Voltron trades off language-conditioned visual reconstruction to learn low-level visual patterns, and visually-grounded language generation to encode high-level semantics. We also construct a new evaluation suite spanning five distinct robot learning problems x2013 a unified platform for holistically evaluating visual representations for robotics. Through comprehensive, controlled experiments across all five problems, we find that Voltron's language-driven representations outperform the prior state-of-the-art, especially on targeted problems requiring higher-level features.

  • 7 authors
·
Feb 24, 2023

ComplexVCoder: An LLM-Driven Framework for Systematic Generation of Complex Verilog Code

Recent advances have demonstrated the promising capabilities of large language models (LLMs) in generating register-transfer level (RTL) code, such as Verilog. However, existing LLM-based frameworks still face significant challenges in accurately handling the complexity of real-world RTL designs, particularly those that are large-scale and involve multi-level module instantiations. To address this issue, we present ComplexVCoder, an open-source LLM-driven framework that enhances both the generation quality and efficiency of complex Verilog code. Specifically, we introduce a two-stage generation mechanism, which leverages an intermediate representation to enable a more accurate and structured transition from natural language descriptions to intricate Verilog designs. In addition, we introduce a rule-based alignment method and a domain-specific retrieval-augmented generation (RAG) to further improve the correctness of the synthesized code by incorporating relevant design knowledge during generation. To evaluate our approach, we construct a comprehensive dataset comprising 55 complex Verilog designs derived from real-world implementations. We also release an open-source benchmark suite for systematically assessing the quality of auto-generated RTL code together with the ComplexVCoder framework. Experimental results show that ComplexVCoder outperforms SOTA frameworks such as CodeV and RTLCoder by 14.6% and 22.2%, respectively, in terms of function correctness on complex Verilog benchmarks. Furthermore, ComplexVcoder achieves comparable generation performances in terms of functionality correctness using a lightweight 32B model (Qwen2.5), rivaling larger-scale models such as GPT-3.5 and DeepSeek-V3.

  • 10 authors
·
Apr 29

A Neural Representation Framework with LLM-Driven Spatial Reasoning for Open-Vocabulary 3D Visual Grounding

Open-vocabulary 3D visual grounding aims to localize target objects based on free-form language queries, which is crucial for embodied AI applications such as autonomous navigation, robotics, and augmented reality. Learning 3D language fields through neural representations enables accurate understanding of 3D scenes from limited viewpoints and facilitates the localization of target objects in complex environments. However, existing language field methods struggle to accurately localize instances using spatial relations in language queries, such as ``the book on the chair.'' This limitation mainly arises from inadequate reasoning about spatial relations in both language queries and 3D scenes. In this work, we propose SpatialReasoner, a novel neural representation-based framework with large language model (LLM)-driven spatial reasoning that constructs a visual properties-enhanced hierarchical feature field for open-vocabulary 3D visual grounding. To enable spatial reasoning in language queries, SpatialReasoner fine-tunes an LLM to capture spatial relations and explicitly infer instructions for the target, anchor, and spatial relation. To enable spatial reasoning in 3D scenes, SpatialReasoner incorporates visual properties (opacity and color) to construct a hierarchical feature field. This field represents language and instance features using distilled CLIP features and masks extracted via the Segment Anything Model (SAM). The field is then queried using the inferred instructions in a hierarchical manner to localize the target 3D instance based on the spatial relation in the language query. Extensive experiments show that our framework can be seamlessly integrated into different neural representations, outperforming baseline models in 3D visual grounding while empowering their spatial reasoning capability.

  • 7 authors
·
Jul 9

SimCroP: Radiograph Representation Learning with Similarity-driven Cross-granularity Pre-training

Medical vision-language pre-training shows great potential in learning representative features from massive paired radiographs and reports. However, in computed tomography (CT) scans, the distribution of lesions which contain intricate structures is characterized by spatial sparsity. Besides, the complex and implicit relationships between different pathological descriptions in each sentence of the report and their corresponding sub-regions in radiographs pose additional challenges. In this paper, we propose a Similarity-Driven Cross-Granularity Pre-training (SimCroP) framework on chest CTs, which combines similarity-driven alignment and cross-granularity fusion to improve radiograph interpretation. We first leverage multi-modal masked modeling to optimize the encoder for understanding precise low-level semantics from radiographs. Then, similarity-driven alignment is designed to pre-train the encoder to adaptively select and align the correct patches corresponding to each sentence in reports. The cross-granularity fusion module integrates multimodal information across instance level and word-patch level, which helps the model better capture key pathology structures in sparse radiographs, resulting in improved performance for multi-scale downstream tasks. SimCroP is pre-trained on a large-scale paired CT-reports dataset and validated on image classification and segmentation tasks across five public datasets. Experimental results demonstrate that SimCroP outperforms both cutting-edge medical self-supervised learning methods and medical vision-language pre-training methods. Codes and models are available at https://github.com/ToniChopp/SimCroP.

  • 11 authors
·
Sep 10

BLIP-FusePPO: A Vision-Language Deep Reinforcement Learning Framework for Lane Keeping in Autonomous Vehicles

In this paper, we propose Bootstrapped Language-Image Pretraining-driven Fused State Representation in Proximal Policy Optimization (BLIP-FusePPO), a novel multimodal reinforcement learning (RL) framework for autonomous lane-keeping (LK), in which semantic embeddings generated by a vision-language model (VLM) are directly fused with geometric states, LiDAR observations, and Proportional-Integral-Derivative-based (PID) control feedback within the agent observation space. The proposed method lets the agent learn driving rules that are aware of their surroundings and easy to understand by combining high-level scene understanding from the VLM with low-level control and spatial signals. Our architecture brings together semantic, geometric, and control-aware representations to make policy learning more robust. A hybrid reward function that includes semantic alignment, LK accuracy, obstacle avoidance, and speed regulation helps learning to be more efficient and generalizable. Our method is different from the approaches that only use semantic models to shape rewards. Instead, it directly embeds semantic features into the state representation. This cuts down on expensive runtime inference and makes sure that semantic guidance is always available. The simulation results show that the proposed model is better at LK stability and adaptability than the best vision-based and multimodal RL baselines in a wide range of difficult driving situations. We make our code publicly available.

  • 3 authors
·
Oct 25

PhysRig: Differentiable Physics-Based Skinning and Rigging Framework for Realistic Articulated Object Modeling

Skinning and rigging are fundamental components in animation, articulated object reconstruction, motion transfer, and 4D generation. Existing approaches predominantly rely on Linear Blend Skinning (LBS), due to its simplicity and differentiability. However, LBS introduces artifacts such as volume loss and unnatural deformations, and it fails to model elastic materials like soft tissues, fur, and flexible appendages (e.g., elephant trunks, ears, and fatty tissues). In this work, we propose PhysRig: a differentiable physics-based skinning and rigging framework that overcomes these limitations by embedding the rigid skeleton into a volumetric representation (e.g., a tetrahedral mesh), which is simulated as a deformable soft-body structure driven by the animated skeleton. Our method leverages continuum mechanics and discretizes the object as particles embedded in an Eulerian background grid to ensure differentiability with respect to both material properties and skeletal motion. Additionally, we introduce material prototypes, significantly reducing the learning space while maintaining high expressiveness. To evaluate our framework, we construct a comprehensive synthetic dataset using meshes from Objaverse, The Amazing Animals Zoo, and MixaMo, covering diverse object categories and motion patterns. Our method consistently outperforms traditional LBS-based approaches, generating more realistic and physically plausible results. Furthermore, we demonstrate the applicability of our framework in the pose transfer task highlighting its versatility for articulated object modeling.

  • 5 authors
·
Jun 25 3

JoyVASA: Portrait and Animal Image Animation with Diffusion-Based Audio-Driven Facial Dynamics and Head Motion Generation

Audio-driven portrait animation has made significant advances with diffusion-based models, improving video quality and lipsync accuracy. However, the increasing complexity of these models has led to inefficiencies in training and inference, as well as constraints on video length and inter-frame continuity. In this paper, we propose JoyVASA, a diffusion-based method for generating facial dynamics and head motion in audio-driven facial animation. Specifically, in the first stage, we introduce a decoupled facial representation framework that separates dynamic facial expressions from static 3D facial representations. This decoupling allows the system to generate longer videos by combining any static 3D facial representation with dynamic motion sequences. Then, in the second stage, a diffusion transformer is trained to generate motion sequences directly from audio cues, independent of character identity. Finally, a generator trained in the first stage uses the 3D facial representation and the generated motion sequences as inputs to render high-quality animations. With the decoupled facial representation and the identity-independent motion generation process, JoyVASA extends beyond human portraits to animate animal faces seamlessly. The model is trained on a hybrid dataset of private Chinese and public English data, enabling multilingual support. Experimental results validate the effectiveness of our approach. Future work will focus on improving real-time performance and refining expression control, further expanding the applications in portrait animation. The code is available at: https://github.com/jdh-algo/JoyVASA.

  • 7 authors
·
Nov 14, 2024

On the Design and Analysis of LLM-Based Algorithms

We initiate a formal investigation into the design and analysis of LLM-based algorithms, i.e. algorithms that contain one or multiple calls of large language models (LLMs) as sub-routines and critically rely on the capabilities of LLMs. While LLM-based algorithms, ranging from basic LLM calls with prompt engineering to complicated LLM-powered agent systems and compound AI systems, have achieved remarkable empirical success, the design and optimization of them have mostly relied on heuristics and trial-and-errors, which is largely due to a lack of formal and analytical study for these algorithms. To fill this gap, we start by identifying the computational-graph representation of LLM-based algorithms, the design principle of task decomposition, and some key abstractions, which then facilitate our formal analysis for the accuracy and efficiency of LLM-based algorithms, despite the black-box nature of LLMs. Through extensive analytical and empirical investigation in a series of case studies, we demonstrate that the proposed framework is broadly applicable to a wide range of scenarios and diverse patterns of LLM-based algorithms, such as parallel, hierarchical and recursive task decomposition. Our proposed framework holds promise for advancing LLM-based algorithms, by revealing the reasons behind curious empirical phenomena, guiding the choices of hyperparameters, predicting the empirical performance of algorithms, and inspiring new algorithm design. To promote further study of LLM-based algorithms, we release our source code at https://github.com/modelscope/agentscope/tree/main/examples/paper_llm_based_algorithm.

  • 4 authors
·
Jul 20, 2024

Retrieval-based Disentangled Representation Learning with Natural Language Supervision

Disentangled representation learning remains challenging as the underlying factors of variation in the data do not naturally exist. The inherent complexity of real-world data makes it unfeasible to exhaustively enumerate and encapsulate all its variations within a finite set of factors. However, it is worth noting that most real-world data have linguistic equivalents, typically in the form of textual descriptions. These linguistic counterparts can represent the data and effortlessly decomposed into distinct tokens. In light of this, we present Vocabulary Disentangled Retrieval (VDR), a retrieval-based framework that harnesses natural language as proxies of the underlying data variation to drive disentangled representation learning. Our approach employ a bi-encoder model to represent both data and natural language in a vocabulary space, enabling the model to distinguish dimensions that capture intrinsic characteristics within data through its natural language counterpart, thus facilitating disentanglement. We extensively assess the performance of VDR across 15 retrieval benchmark datasets, covering text-to-text and cross-modal retrieval scenarios, as well as human evaluation. Our experimental results compellingly demonstrate the superiority of VDR over previous bi-encoder retrievers with comparable model size and training costs, achieving an impressive 8.7% improvement in NDCG@10 on the BEIR benchmark, a 5.3% increase on MS COCO, and a 6.0% increase on Flickr30k in terms of mean recall in the zero-shot setting. Moreover, The results from human evaluation indicate that interpretability of our method is on par with SOTA captioning models.

  • 6 authors
·
Dec 15, 2022

A Unit Enhancement and Guidance Framework for Audio-Driven Avatar Video Generation

Audio-driven human animation technology is widely used in human-computer interaction, and the emergence of diffusion models has further advanced its development. Currently, most methods rely on multi-stage generation and intermediate representations, resulting in long inference time and issues with generation quality in specific foreground regions and audio-motion consistency. These shortcomings are primarily due to the lack of localized fine-grained supervised guidance. To address above challenges, we propose Parts-aware Audio-driven Human Animation, PAHA, a unit enhancement and guidance framework for audio-driven upper-body animation. We introduce two key methods: Parts-Aware Re-weighting (PAR) and Parts Consistency Enhancement (PCE). PAR dynamically adjusts regional training loss weights based on pose confidence scores, effectively improving visual quality. PCE constructs and trains diffusion-based regional audio-visual classifiers to improve the consistency of motion and co-speech audio. Afterwards, we design two novel inference guidance methods for the foregoing classifiers, Sequential Guidance (SG) and Differential Guidance (DG), to balance efficiency and quality respectively. Additionally, we build CNAS, the first public Chinese News Anchor Speech dataset, to advance research and validation in this field. Extensive experimental results and user studies demonstrate that PAHA significantly outperforms existing methods in audio-motion alignment and video-related evaluations. The codes and CNAS dataset will be released upon acceptance.

  • 5 authors
·
May 6

DeepForgeSeal: Latent Space-Driven Semi-Fragile Watermarking for Deepfake Detection Using Multi-Agent Adversarial Reinforcement Learning

Rapid advances in generative AI have led to increasingly realistic deepfakes, posing growing challenges for law enforcement and public trust. Existing passive deepfake detectors struggle to keep pace, largely due to their dependence on specific forgery artifacts, which limits their ability to generalize to new deepfake types. Proactive deepfake detection using watermarks has emerged to address the challenge of identifying high-quality synthetic media. However, these methods often struggle to balance robustness against benign distortions with sensitivity to malicious tampering. This paper introduces a novel deep learning framework that harnesses high-dimensional latent space representations and the Multi-Agent Adversarial Reinforcement Learning (MAARL) paradigm to develop a robust and adaptive watermarking approach. Specifically, we develop a learnable watermark embedder that operates in the latent space, capturing high-level image semantics, while offering precise control over message encoding and extraction. The MAARL paradigm empowers the learnable watermarking agent to pursue an optimal balance between robustness and fragility by interacting with a dynamic curriculum of benign and malicious image manipulations simulated by an adversarial attacker agent. Comprehensive evaluations on the CelebA and CelebA-HQ benchmarks reveal that our method consistently outperforms state-of-the-art approaches, achieving improvements of over 4.5% on CelebA and more than 5.3% on CelebA-HQ under challenging manipulation scenarios.

  • 3 authors
·
Nov 6

FuXi-RTM: A Physics-Guided Prediction Framework with Radiative Transfer Modeling

Similar to conventional video generation, current deep learning-based weather prediction frameworks often lack explicit physical constraints, leading to unphysical outputs that limit their reliability for operational forecasting. Among various physical processes requiring proper representation, radiation plays a fundamental role as it drives Earth's weather and climate systems. However, accurate simulation of radiative transfer processes remains challenging for traditional numerical weather prediction (NWP) models due to their inherent complexity and high computational costs. Here, we propose FuXi-RTM, a hybrid physics-guided deep learning framework designed to enhance weather forecast accuracy while enforcing physical consistency. FuXi-RTM integrates a primary forecasting model (FuXi) with a fixed deep learning-based radiative transfer model (DLRTM) surrogate that efficiently replaces conventional radiation parameterization schemes. This represents the first deep learning-based weather forecasting framework to explicitly incorporate physical process modeling. Evaluated over a comprehensive 5-year dataset, FuXi-RTM outperforms its unconstrained counterpart in 88.51% of 3320 variable and lead time combinations, with improvements in radiative flux predictions. By incorporating additional physical processes, FuXi-RTM paves the way for next-generation weather forecasting systems that are both accurate and physically consistent.

  • 5 authors
·
Mar 25

Efficient and Scalable Estimation of Tool Representations in Vector Space

Recent advancements in function calling and tool use have significantly enhanced the capabilities of large language models (LLMs) by enabling them to interact with external information sources and execute complex tasks. However, the limited context window of LLMs presents challenges when a large number of tools are available, necessitating efficient methods to manage prompt length and maintain accuracy. Existing approaches, such as fine-tuning LLMs or leveraging their reasoning capabilities, either require frequent retraining or incur significant latency overhead. A more efficient solution involves training smaller models to retrieve the most relevant tools for a given query, although this requires high quality, domain-specific data. To address those challenges, we present a novel framework for generating synthetic data for tool retrieval applications and an efficient data-driven tool retrieval strategy using small encoder models. Empowered by LLMs, we create ToolBank, a new tool retrieval dataset that reflects real human user usages. For tool retrieval methodologies, we propose novel approaches: (1) Tool2Vec: usage-driven tool embedding generation for tool retrieval, (2) ToolRefiner: a staged retrieval method that iteratively improves the quality of retrieved tools, and (3) MLC: framing tool retrieval as a multi-label classification problem. With these new methods, we achieve improvements of up to 27.28 in Recall@K on the ToolBench dataset and 30.5 in Recall@K on ToolBank. Additionally, we present further experimental results to rigorously validate our methods. Our code is available at https://github.com/SqueezeAILab/Tool2Vec

  • 7 authors
·
Sep 2, 2024

Hi-End-MAE: Hierarchical encoder-driven masked autoencoders are stronger vision learners for medical image segmentation

Medical image segmentation remains a formidable challenge due to the label scarcity. Pre-training Vision Transformer (ViT) through masked image modeling (MIM) on large-scale unlabeled medical datasets presents a promising solution, providing both computational efficiency and model generalization for various downstream tasks. However, current ViT-based MIM pre-training frameworks predominantly emphasize local aggregation representations in output layers and fail to exploit the rich representations across different ViT layers that better capture fine-grained semantic information needed for more precise medical downstream tasks. To fill the above gap, we hereby present Hierarchical Encoder-driven MAE (Hi-End-MAE), a simple yet effective ViT-based pre-training solution, which centers on two key innovations: (1) Encoder-driven reconstruction, which encourages the encoder to learn more informative features to guide the reconstruction of masked patches; and (2) Hierarchical dense decoding, which implements a hierarchical decoding structure to capture rich representations across different layers. We pre-train Hi-End-MAE on a large-scale dataset of 10K CT scans and evaluated its performance across seven public medical image segmentation benchmarks. Extensive experiments demonstrate that Hi-End-MAE achieves superior transfer learning capabilities across various downstream tasks, revealing the potential of ViT in medical imaging applications. The code is available at: https://github.com/FengheTan9/Hi-End-MAE

  • 6 authors
·
Feb 12

DTT: An Example-Driven Tabular Transformer for Joinability by Leveraging Large Language Models

Many organizations rely on data from government and third-party sources, and those sources rarely follow the same data formatting. This introduces challenges in integrating data from multiple sources or aligning external sources with internal databases. Commercial database systems do not offer adequate support for integrating data from heterogeneous sources, and manual integration is both time-consuming and inefficient. State-of-the-art data integration approaches that rely on similarity functions and textual transformations often fail to handle challenging cases where multiple mappings are required, or the mappings go beyond simple textual transformations. In this paper, we study the potentials of deep neural models for transforming tables for joinability. In particular, we cast the problem as a prediction task and develop a framework that leverages large deep-learning language models to transform tabular data from a source formatting to a desired target representation. Our framework can efficiently learn the patterns for mapping a source formatting into an expected target using just a few examples, which can then be used for tasks such as table joining, filling in missing values, and error detection. Compared to state-of-the-art mapping and joining approaches, our framework delivers noticeably more accurate and scalable performance on both real-world and synthetic datasets. Our experimental evaluation also shows that the performance of the proposed framework using our fine-tuned model is at par or better than large language models such as GPT-3, despite the significant difference in size, and that using large language models within our framework improves their performance.

  • 2 authors
·
Mar 12, 2023

MIGE: A Unified Framework for Multimodal Instruction-Based Image Generation and Editing

Despite significant progress in diffusion-based image generation, subject-driven generation and instruction-based editing remain challenging. Existing methods typically treat them separately, struggling with limited high-quality data and poor generalization. However, both tasks require capturing complex visual variations while maintaining consistency between inputs and outputs. Therefore, we propose MIGE, a unified framework that standardizes task representations using multimodal instructions. It treats subject-driven generation as creation on a blank canvas and instruction-based editing as modification of an existing image, establishing a shared input-output formulation. MIGE introduces a novel multimodal encoder that maps free-form multimodal instructions into a unified vision-language space, integrating visual and semantic features through a feature fusion mechanism.This unification enables joint training of both tasks, providing two key advantages: (1) Cross-Task Enhancement: By leveraging shared visual and semantic representations, joint training improves instruction adherence and visual consistency in both subject-driven generation and instruction-based editing. (2) Generalization: Learning in a unified format facilitates cross-task knowledge transfer, enabling MIGE to generalize to novel compositional tasks, including instruction-based subject-driven editing. Experiments show that MIGE excels in both subject-driven generation and instruction-based editing while setting a state-of-the-art in the new task of instruction-based subject-driven editing. Code and model have been publicly available at https://github.com/Eureka-Maggie/MIGE.

  • 6 authors
·
Feb 28 2

UNICON: A unified framework for behavior-based consumer segmentation in e-commerce

Data-driven personalization is a key practice in fashion e-commerce, improving the way businesses serve their consumers needs with more relevant content. While hyper-personalization offers highly targeted experiences to each consumer, it requires a significant amount of private data to create an individualized journey. To alleviate this, group-based personalization provides a moderate level of personalization built on broader common preferences of a consumer segment, while still being able to personalize the results. We introduce UNICON, a unified deep learning consumer segmentation framework that leverages rich consumer behavior data to learn long-term latent representations and utilizes them to extract two pivotal types of segmentation catering various personalization use-cases: lookalike, expanding a predefined target seed segment with consumers of similar behavior, and data-driven, revealing non-obvious consumer segments with similar affinities. We demonstrate through extensive experimentation our framework effectiveness in fashion to identify lookalike Designer audience and data-driven style segments. Furthermore, we present experiments that showcase how segment information can be incorporated in a hybrid recommender system combining hyper and group-based personalization to exploit the advantages of both alternatives and provide improvements on consumer experience.

  • 8 authors
·
Sep 18, 2023

AI Mother Tongue: Self-Emergent Communication in MARL via Endogenous Symbol Systems

In Decentralized Multi-Agent Reinforcement Learning (MARL), the development of Emergent Communication has long been constrained by the ``Joint Exploration Dilemma'', leading agents to fall into a ``Communication Vacuum Equilibrium'' . Traditional methods address this by introducing inductive biases to facilitate communication emergence . This study fundamentally questions whether such artificial inductive biases are, in fact, over-engineering. Through experiments with the ``AI Mother Tongue'' (AIM) framework, based on a Vector Quantized Variational Autoencoder (VQ-VAE), we demonstrate that when agents possess an endogenous symbol system, their neural representations naturally exhibit spontaneous semantic compression and Nash equilibrium-driven semantic convergence, achieving effective symbolic communication without external inductive biases. This aligns with recent neuroscience findings suggesting that the human brain does not directly use human language for internal thought , and resonates with research on ``soft thinking'' capabilities in Large Language Models (LLMs) . Compared to traditional explicit communication methods, AIM demonstrates stronger generality and efficiency. The interpretable analysis toolkit developed in this study confirms that symbol usage exhibits a significant power-law distribution, leading to three major theoretical insights: the ``Neural Communication Hypothesis'', the ``Tool-First Principle'', and the ``Semantic Interpretability Paradigm''. Future research will explore the integration of Hierarchical Quantized Variational Autoencoders (HQ-VAE) to enhance AIM's complex expressive capabilities and investigate the potential for ``Reinforcement Learning (RL) Low-Level Pre-training''. This discovery offers new avenues for bridging symbolism and connectionism.

RelationNet++: Bridging Visual Representations for Object Detection via Transformer Decoder

Existing object detection frameworks are usually built on a single format of object/part representation, i.e., anchor/proposal rectangle boxes in RetinaNet and Faster R-CNN, center points in FCOS and RepPoints, and corner points in CornerNet. While these different representations usually drive the frameworks to perform well in different aspects, e.g., better classification or finer localization, it is in general difficult to combine these representations in a single framework to make good use of each strength, due to the heterogeneous or non-grid feature extraction by different representations. This paper presents an attention-based decoder module similar as that in Transformer~vaswani2017attention to bridge other representations into a typical object detector built on a single representation format, in an end-to-end fashion. The other representations act as a set of key instances to strengthen the main query representation features in the vanilla detectors. Novel techniques are proposed towards efficient computation of the decoder module, including a key sampling approach and a shared location embedding approach. The proposed module is named bridging visual representations (BVR). It can perform in-place and we demonstrate its broad effectiveness in bridging other representations into prevalent object detection frameworks, including RetinaNet, Faster R-CNN, FCOS and ATSS, where about 1.5sim3.0 AP improvements are achieved. In particular, we improve a state-of-the-art framework with a strong backbone by about 2.0 AP, reaching 52.7 AP on COCO test-dev. The resulting network is named RelationNet++. The code will be available at https://github.com/microsoft/RelationNet2.

  • 3 authors
·
Oct 29, 2020

DataFlow: An LLM-Driven Framework for Unified Data Preparation and Workflow Automation in the Era of Data-Centric AI

The rapidly growing demand for high-quality data in Large Language Models (LLMs) has intensified the need for scalable, reliable, and semantically rich data preparation pipelines. However, current practices remain dominated by ad-hoc scripts and loosely specified workflows, which lack principled abstractions, hinder reproducibility, and offer limited support for model-in-the-loop data generation. To address these challenges, we present DataFlow, a unified and extensible LLM-driven data preparation framework. DataFlow is designed with system-level abstractions that enable modular, reusable, and composable data transformations, and provides a PyTorch-style pipeline construction API for building debuggable and optimizable dataflows. The framework consists of nearly 200 reusable operators and six domain-general pipelines spanning text, mathematical reasoning, code, Text-to-SQL, agentic RAG, and large-scale knowledge extraction. To further improve usability, we introduce DataFlow-Agent, which automatically translates natural-language specifications into executable pipelines via operator synthesis, pipeline planning, and iterative verification. Across six representative use cases, DataFlow consistently improves downstream LLM performance. Our math, code, and text pipelines outperform curated human datasets and specialized synthetic baselines, achieving up to +3\% execution accuracy in Text-to-SQL over SynSQL, +7\% average improvements on code benchmarks, and 1--3 point gains on MATH, GSM8K, and AIME. Moreover, a unified 10K-sample dataset produced by DataFlow enables base models to surpass counterparts trained on 1M Infinity-Instruct data. These results demonstrate that DataFlow provides a practical and high-performance substrate for reliable, reproducible, and scalable LLM data preparation, and establishes a system-level foundation for future data-centric AI development.

SeC: Advancing Complex Video Object Segmentation via Progressive Concept Construction

Video Object Segmentation (VOS) is a core task in computer vision, requiring models to track and segment target objects across video frames. Despite notable advances with recent efforts, current techniques still lag behind human capabilities in handling drastic visual variations, occlusions, and complex scene changes. This limitation arises from their reliance on appearance matching, neglecting the human-like conceptual understanding of objects that enables robust identification across temporal dynamics. Motivated by this gap, we propose Segment Concept (SeC), a concept-driven segmentation framework that shifts from conventional feature matching to the progressive construction and utilization of high-level, object-centric representations. SeC employs Large Vision-Language Models (LVLMs) to integrate visual cues across diverse frames, constructing robust conceptual priors. During inference, SeC forms a comprehensive semantic representation of the target based on processed frames, realizing robust segmentation of follow-up frames. Furthermore, SeC adaptively balances LVLM-based semantic reasoning with enhanced feature matching, dynamically adjusting computational efforts based on scene complexity. To rigorously assess VOS methods in scenarios demanding high-level conceptual reasoning and robust semantic understanding, we introduce the Semantic Complex Scenarios Video Object Segmentation benchmark (SeCVOS). SeCVOS comprises 160 manually annotated multi-scenario videos designed to challenge models with substantial appearance variations and dynamic scene transformations. In particular, SeC achieves an 11.8-point improvement over SAM 2.1 on SeCVOS, establishing a new state-of-the-art in concept-aware video object segmentation.

  • 10 authors
·
Jul 21 1

CuES: A Curiosity-driven and Environment-grounded Synthesis Framework for Agentic RL

Large language model based agents are increasingly deployed in complex, tool augmented environments. While reinforcement learning provides a principled mechanism for such agents to improve through interaction, its effectiveness critically depends on the availability of structured training tasks. In many realistic settings, however, no such tasks exist a challenge we term task scarcity, which has become a key bottleneck for scaling agentic RL. Existing approaches typically assume predefined task collections, an assumption that fails in novel environments where tool semantics and affordances are initially unknown. To address this limitation, we formalize the problem of Task Generation for Agentic RL, where an agent must learn within a given environment that lacks predefined tasks. We propose CuES, a Curiosity driven and Environment grounded Synthesis framework that autonomously generates diverse, executable, and meaningful tasks directly from the environment structure and affordances, without relying on handcrafted seeds or external corpora. CuES drives exploration through intrinsic curiosity, abstracts interaction patterns into reusable task schemas, and refines them through lightweight top down guidance and memory based quality control. Across three representative environments, AppWorld, BFCL, and WebShop, CuES produces task distributions that match or surpass manually curated datasets in both diversity and executability, yielding substantial downstream policy improvements. These results demonstrate that curiosity driven, environment grounded task generation provides a scalable foundation for agents that not only learn how to act, but also learn what to learn. The code is available at https://github.com/modelscope/AgentEvolver/tree/main/research/CuES.

  • 8 authors
·
Dec 1

ORBIT: An Object Property Reasoning Benchmark for Visual Inference Tasks

While vision-language models (VLMs) have made remarkable progress on many popular visual question answering (VQA) benchmarks, it remains unclear whether they abstract and reason over depicted objects. Inspired by human object categorisation, object property reasoning involves identifying and recognising low-level details and higher-level abstractions. While current VQA benchmarks consider a limited set of object property attributes like size, they typically blend perception and reasoning, and lack representativeness in terms of reasoning and image categories. To this end, we introduce a systematic evaluation framework with images of three representative types, three reasoning levels of increasing complexity, and four object property dimensions driven by prior work on commonsense reasoning. We develop a procedure to instantiate this benchmark into ORBIT, a multi-level reasoning VQA benchmark for object properties comprising 360 images paired with a total of 1,080 count-based questions. Experiments with 12 state-of-the-art VLMs in zero-shot settings reveal significant limitations compared to humans, with the best-performing model only reaching 40\% accuracy. VLMs struggle particularly with realistic (photographic) images, counterfactual reasoning about physical and functional properties, and higher counts. ORBIT points to the need to develop methods for scalable benchmarking, generalize annotation guidelines, and explore additional reasoning VLMs. We make the ORBIT benchmark and the experimental code available to support such endeavors.

  • 5 authors
·
Aug 14