- Existence-Uniqueness Theory and Small-Data Decay for a Reaction-Diffusion Model of Wildfire Spread I examine some analytical properties of a nonlinear reaction-diffusion system that has been used to model the propagation of a wildfire. I establish global-in-time existence and uniqueness of bounded mild solutions to the Cauchy problem for this system given bounded initial data. In particular, this shows that the model does not allow for thermal blow-up. If the initial temperature and fuel density also satisfy certain integrability conditions, the L^2-norms of these global solutions are uniformly bounded in time. Additionally, I use a bootstrap argument to show that small initial temperatures give rise to solutions that decay to zero as time goes to infinity, proving the existence of initial states that do not develop into travelling combustion waves. 1 authors · Jun 1, 2024
- Critical norm blow-up rates for the energy supercritical nonlinear heat equation We prove the first classification of blow-up rates of the critical norm for solutions of the energy supercritical nonlinear heat equation, without any assumptions such as radial symmetry or sign conditions. Moreover, the blow-up rates we obtain are optimal, for solutions that blow-up with bounded L^{n(p-1)/2,infty}(R^n)-norm up to the blow-up time. We establish these results by proving quantitative estimates for the energy supercritical nonlinear heat equation with a robust new strategy based on quantitative varepsilon-regularity criterion averaged over certain comparable time scales. With this in hand, we then produce the quantitative estimates using arguments inspired by Palasek [31] and Tao [38] involving quantitative Carleman inequalities applied to the Navier-Stokes equations. Our work shows that energy structure is not essential for establishing blow-up rates of the critical norm for parabolic problems with a scaling symmetry. This paves the way for establishing such critical norm blow-up rates for other nonlinear parabolic equations. 3 authors · Dec 13, 2024