new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

Tool Learning with Foundation Models

Humans possess an extraordinary ability to create and utilize tools, allowing them to overcome physical limitations and explore new frontiers. With the advent of foundation models, AI systems have the potential to be equally adept in tool use as humans. This paradigm, i.e., tool learning with foundation models, combines the strengths of specialized tools and foundation models to achieve enhanced accuracy, efficiency, and automation in problem-solving. Despite its immense potential, there is still a lack of a comprehensive understanding of key challenges, opportunities, and future endeavors in this field. To this end, we present a systematic investigation of tool learning in this paper. We first introduce the background of tool learning, including its cognitive origins, the paradigm shift of foundation models, and the complementary roles of tools and models. Then we recapitulate existing tool learning research into tool-augmented and tool-oriented learning. We formulate a general tool learning framework: starting from understanding the user instruction, models should learn to decompose a complex task into several subtasks, dynamically adjust their plan through reasoning, and effectively conquer each sub-task by selecting appropriate tools. We also discuss how to train models for improved tool-use capabilities and facilitate the generalization in tool learning. Considering the lack of a systematic tool learning evaluation in prior works, we experiment with 18 representative tools and show the potential of current foundation models in skillfully utilizing tools. Finally, we discuss several open problems that require further investigation for tool learning. In general, we hope this paper could inspire future research in integrating tools with foundation models.

  • 41 authors
·
Apr 17, 2023

AskToAct: Enhancing LLMs Tool Use via Self-Correcting Clarification

Large language models (LLMs) have demonstrated remarkable capabilities in tool learning. In real-world scenarios, user queries are often ambiguous and incomplete, requiring effective clarification. However, existing interactive clarification approaches face two critical limitations: reliance on manually constructed datasets and lack of error correction mechanisms during multi-turn clarification. We present AskToAct, which addresses these challenges by exploiting the structural mapping between queries and their tool invocation solutions. Our key insight is that tool parameters naturally represent explicit user intents. By systematically removing key parameters from queries while retaining them as ground truth, we enable automated construction of high-quality training data. We further enhance model robustness by fine-tuning on error-correction augmented data using selective masking mechanism, enabling dynamic error detection during clarification interactions. Comprehensive experiments demonstrate that AskToAct significantly outperforms existing approaches, achieving above 79% accuracy in recovering critical unspecified intents and enhancing clarification efficiency by an average of 48.34% while maintaining high accuracy in tool invocation. Our framework exhibits robust performance across varying complexity levels and successfully generalizes to entirely unseen APIs without additional training, achieving performance comparable to GPT-4 with substantially fewer computational resources.

  • 9 authors
·
Mar 3, 2025

ReTool: Reinforcement Learning for Strategic Tool Use in LLMs

While reasoning models (e.g., DeepSeek R1) trained with reinforcement learning (RL), excel in textual reasoning, they struggle in scenarios requiring structured problem-solving, such as geometric reasoning, concise computation, or complex equation solving-areas where computational tools like code interpreters (CI) demonstrate distinct advantages. To bridge this gap, we propose ReTool, which enhances long-form reasoning with tool-integrated learning, including two key features: (1) dynamic interleaving of real-time code execution within natural language reasoning processes, and (2) an automated RL paradigm that allows policy rollouts with multi-turn real-time code execution and teaches the model in learning when and how to invoke tools based on outcome feedback. ReTool employs a systematic training framework, beginning with synthetic cold-start data generation to produce code-augmented long-form reasoning traces for fine-tuning base models. Subsequent RL training leverages task outcomes as rewards to iteratively refine the model's tool use strategy, enabling autonomous discovery of optimal tool invocation patterns without human priors. Experiments on the challenging MATH Olympiad benchmark AIME demonstrate ReTool's superiority: Our 32B model achieves 67% accuracy with 400 training steps, outperforming text-based RL baseline (40% accuracy, 1080 steps) in efficiency and performance. Remarkably, ReTool-32B attains 72.5% accuracy in extended settings, surpassing OpenAI's o1-preview by 27.9%. Further analysis reveals emergent behaviors such as code self-correction, signaling an ''aha moment'' in which the model autonomously masters adaptive tool use. These findings highlight the promise of outcome-driven tool integration for advancing complex mathematical reasoning and offer new insights into hybrid neuro-symbolic systems.

  • 9 authors
·
Apr 15, 2025 4

OpenThinkIMG: Learning to Think with Images via Visual Tool Reinforcement Learning

While humans can flexibly leverage interactive visual cognition for complex problem-solving, enabling Large Vision-Language Models (LVLMs) to learn similarly adaptive behaviors with visual tools remains challenging. A significant hurdle is the current lack of standardized infrastructure, which hinders integrating diverse tools, generating rich interaction data, and training robust agents effectively. To address these gaps, we introduce OpenThinkIMG, the first open-source, comprehensive end-to-end framework for tool-augmented LVLMs. It features standardized vision tool interfaces, scalable trajectory generation for policy initialization, and a flexible training environment. Furthermore, considering supervised fine-tuning (SFT) on static demonstrations offers limited policy generalization for dynamic tool invocation, we propose a novel reinforcement learning (RL) framework V-ToolRL to train LVLMs to learn adaptive policies for invoking external vision tools. V-ToolRL enables LVLMs to autonomously discover optimal tool-usage strategies by directly optimizing for task success using feedback from tool interactions. We empirically validate V-ToolRL on challenging chart reasoning tasks. Our RL-trained agent, built upon a Qwen2-VL-2B, significantly outperforms its SFT-initialized counterpart (+28.83 points) and surpasses established supervised tool-learning baselines like Taco and CogCom by an average of +12.7 points. Notably, it also surpasses prominent closed-source models like GPT-4.1 by +8.68 accuracy points. We hope OpenThinkIMG can serve as a foundational framework for advancing dynamic, tool-augmented visual reasoning, helping the community develop AI agents that can genuinely "think with images".

  • 11 authors
·
May 13, 2025 3

ToolAlpaca: Generalized Tool Learning for Language Models with 3000 Simulated Cases

Enabling large language models to utilize real-world tools effectively is crucial for achieving embodied intelligence. Existing approaches to tool learning have either primarily relied on extremely large language models, such as GPT-4, to attain generalized tool-use abilities in a zero-shot manner, or utilized supervised learning to train limited scopes of tools on compact models. However, it remains uncertain whether smaller language models can achieve generalized tool-use abilities without tool-specific training. To address this question, this paper introduces ToolAlpaca, a novel framework designed to automatically generate a diverse tool-use corpus and learn generalized tool-use abilities on compact language models with minimal human intervention. Specifically, ToolAlpaca first automatically creates a highly diversified tool-use corpus by building a multi-agent simulation environment. The corpus contains 3938 tool-use instances from more than 400 real-world tool APIs spanning 50 distinct categories. Subsequently, the constructed corpus is employed to fine-tune compact language models, resulting in two models, namely ToolAlpaca-7B and ToolAlpaca-13B, respectively. Finally, we evaluate the ability of these models to utilize previously unseen tools without specific training. Experimental results demonstrate that ToolAlpaca achieves effective generalized tool-use capabilities comparable to those of extremely large language models like GPT-3.5, demonstrating that learning generalized tool-use ability is feasible for compact language models.

  • 7 authors
·
Jun 8, 2023

ACECode: A Reinforcement Learning Framework for Aligning Code Efficiency and Correctness in Code Language Models

CodeLLMs have demonstrated remarkable advancements in software engineering tasks. However, while these models can generate functionally correct code, they often produce code that is inefficient in terms of runtime. This inefficiency is particularly problematic in resource-constrained environments, impacting software performance and sustainability. Existing approaches for optimizing code efficiency for CodeLLMs like SOAP and PIE exhibit certain limitations. SOAP requires a compatible execution environment and predefined test cases for iterative code modification, while PIE focuses on instruction tuning, improving efficiency but compromising correctness. These shortcomings highlight the need for a fine-tuning framework that optimizes both efficiency and correctness without relying on predefined test cases or specific execution environments. To bridge this gap, we introduce ACECode, a reinforcement learning-based fine-tuning framework that aligns CodeLLMs with dual objectives of efficiency and correctness. ACECode combines three key steps: (1) generating code with an actor CodeLLM, (2) calculating a training-free reward signal derived from code execution feedback for each generated code, and (3) optimizing the CodeLLM via Proximal Policy Optimization (PPO) algorithm. This reward signal enables joint assessment of efficiency and correctness without manual labeling. We evaluate ACECode by fine-tuning four SOTA (state-of-the-art) CodeLLMs and comparing their code with three baselines: original, instruction-tuned, and PIE-tuned CodeLLMs. Extensive experiment results suggest that significantly improves the efficiency and correctness of generated code against all baselines for all CodeLLMs. Specifically, CodeLLMs fine-tuned with ACECode improve pass@1 by 1.84% to 14.51% and reduce runtime in 65% to 72% of cases compared to original CodeLLMs.

  • 4 authors
·
Dec 22, 2024

Can Tool-Integrated Reinforcement Learning Generalize Across Diverse Domains?

Recent advances in large language models (LLMs) have demonstrated remarkable capabilities in reasoning and tool utilization. However, the generalization of tool-augmented reinforcement learning (RL) across diverse domains remains underexplored. In this work, we investigate the cross-domain generalization of an LLM agent equipped with a code interpreter tool, which is exclusively trained on mathematical problem-solving tasks. Despite the restricted training domain, we evaluate the agent's performance across several distinct reasoning domains. The results reveal that RL-based tool usage learned from mathematical tasks can be effectively transferred to complex tasks in other domains, enabling great task performance and high token efficiency. To facilitate this cross-domain transfer, we propose a Tool Generalization Reinforcement Learning (TGRL) framework designed to promote domain-agnostic learning and skill migration, encompassing: (i) a standardized tool interface that abstracts domain-specific nuances through consistent formatting and explicit termination, fostering transferable invocation patterns; (ii) a dual-component reward system that decomposes rewards to incentivize generalizable behaviors like tool efficiency and reasoning abstraction, ensuring alignment and robustness across domain shifts; and (iii) an XML-based prompt template that separates thinking, tool calls, and responses to encourage modular, domain-invariant planning and coherent multi-turn interactions. Extensive experiments across diverse benchmarks validate our approach, achieving state-of-the-art performance and highlighting the cross-domain potential of Tool RL for LLM reasoning.

  • 9 authors
·
Oct 13, 2025

Divide-Then-Aggregate: An Efficient Tool Learning Method via Parallel Tool Invocation

Although current Large Language Models (LLMs) exhibit impressive capabilities, performing complex real-world tasks still requires tool learning. Mainstream methods, such as CoT/ReAct, rely on step-by-step tool invocation to interact with external environments, but they are limited in perceptual scope and lack adequate task-planning capability. To address these limitations, other studies introduce the first Search-based Decision Tree (DFSDT), which still suffers from the high computational cost. In this paper, we introduce a novel parallel tool invocation paradigm, DTA-Llama (Divide-Then-Aggregate Llama). First, we transform traditional tree-based tool search paths into Directed Acyclic Graph (DAG) structure, generating a high-quality parallel tool invocation dataset. The DTA-Llama is then trained on the dataset to learn to iteratively divide the current task into several parallel tool invocation sub-tasks and aggregate the invocation results to decide the next actions. Furthermore, we introduce an efficient inference framework inspired by the Process/Threads mechanism when applying the DTA-Llama to practical tasks. Experimental results show that our approach substantially enhances task performance while reducing token consumption and inference time. Llama2-7B, using our method, is comparable to the official parallel function calling method of GPT-3.5. The relevant code, dataset, and model weights are available at https://corn0205.github.io/

  • 7 authors
·
Jan 21, 2025

Tool-Augmented Policy Optimization: Synergizing Reasoning and Adaptive Tool Use with Reinforcement Learning

Recent advances in large language models (LLMs) have popularized test-time scaling, where models generate additional reasoning tokens before producing final answers. These approaches have demonstrated significant performance improvements on benchmarks involving mathematical reasoning. However, language models relying solely on direct inference still struggle with tasks demanding up-to-date knowledge or computational tools such as calculators and code interpreters for complex arithmetic operations. To overcome these limitations, we propose Tool-Augmented Policy Optimization (TAPO), a novel reinforcement learning framework that systematically integrates multi-hop reasoning with adaptive tool-calling capabilities. Our approach employs a modified version of Dynamic Sampling Policy Optimization (DAPO), a recently developed RL paradigm, which we adapt specifically for tool invocation scenarios, enabling models to dynamically interleave complex reasoning with on-demand tool usage (including search APIs and Python interpreters). To support this research, we introduce two new datasets: TAPO-easy-60K and TAPO-hard-18K, specifically designed to train and evaluate both fact-based reasoning and mathematical calculation capabilities. Our experiments on Qwen2.5-3B and Qwen2.5-7B models demonstrate the effectiveness of our approach, with both models achieving state-of-the-art performance on tasks requiring external knowledge and mathematical computation among methods with comparable parameters. Notably, TAPO achieves more efficient tool utilization than baseline methods while preventing excessive calls caused by reward hacking. These results highlight the significant potential of combining advanced reasoning with tool usage to enhance model performance in knowledge-intensive and computationally demanding tasks.

  • 5 authors
·
Oct 8, 2025

MUA-RL: Multi-turn User-interacting Agent Reinforcement Learning for agentic tool use

With the recent rapid advancement of Agentic Intelligence, agentic tool use in LLMs has become increasingly important. During multi-turn interactions between agents and users, the dynamic, uncertain, and stochastic nature of user demands poses significant challenges to the agent's tool invocation capabilities. Agents are no longer expected to simply call tools to deliver a result; rather, they must iteratively refine their understanding of user needs through communication while simultaneously invoking tools to resolve user queries. Existing reinforcement learning (RL) approaches for tool use lack the integration of genuinely dynamic users during the RL training process. To bridge this gap, we introduce MUA-RL (Multi-turn User-interacting Agent Reinforcement Learning for agentic tool use), a novel reinforcement learning framework that, for the first time in the field of agentic tool use, integrates LLM-simulated users into the reinforcement learning loop. MUA-RL aims to enable autonomous learning of models to communicate with users efficiently and use various tools to solve practical problems in dynamic multi-turn interactions. Evaluations are done on several multi-turn tool-using benchmarks (see Figure 1). Specifically, MUA-RL-32B achieves 67.3 on TAU2 Retail, 45.4 on TAU2 Airline, 28.3 on TAU2 Telecom, 28.4 on BFCL-V3 Multi Turn, and 82.5 on ACEBench Agent -- outperforming or matching the performance of larger open-source models such as DeepSeek-V3-0324 and Qwen3-235B-A22B in non-thinking settings.

  • 9 authors
·
Aug 26, 2025

OTSurv: A Novel Multiple Instance Learning Framework for Survival Prediction with Heterogeneity-aware Optimal Transport

Survival prediction using whole slide images (WSIs) can be formulated as a multiple instance learning (MIL) problem. However, existing MIL methods often fail to explicitly capture pathological heterogeneity within WSIs, both globally -- through long-tailed morphological distributions, and locally through -- tile-level prediction uncertainty. Optimal transport (OT) provides a principled way of modeling such heterogeneity by incorporating marginal distribution constraints. Building on this insight, we propose OTSurv, a novel MIL framework from an optimal transport perspective. Specifically, OTSurv formulates survival predictions as a heterogeneity-aware OT problem with two constraints: (1) global long-tail constraint that models prior morphological distributions to avert both mode collapse and excessive uniformity by regulating transport mass allocation, and (2) local uncertainty-aware constraint that prioritizes high-confidence patches while suppressing noise by progressively raising the total transport mass. We then recast the initial OT problem, augmented by these constraints, into an unbalanced OT formulation that can be solved with an efficient, hardware-friendly matrix scaling algorithm. Empirically, OTSurv sets new state-of-the-art results across six popular benchmarks, achieving an absolute 3.6% improvement in average C-index. In addition, OTSurv achieves statistical significance in log-rank tests and offers high interpretability, making it a powerful tool for survival prediction in digital pathology. Our codes are available at https://github.com/Y-Research-SBU/OTSurv.

  • 5 authors
·
Jun 25, 2025

Smart Timing for Mining: A Deep Learning Framework for Bitcoin Hardware ROI Prediction

Bitcoin mining hardware acquisition requires strategic timing due to volatile markets, rapid technological obsolescence, and protocol-driven revenue cycles. Despite mining's evolution into a capital-intensive industry, there is little guidance on when to purchase new Application-Specific Integrated Circuit (ASIC) hardware, and no prior computational frameworks address this decision problem. We address this gap by formulating hardware acquisition as a time series classification task, predicting whether purchasing ASIC machines yields profitable (Return on Investment (ROI) >= 1), marginal (0 < ROI < 1), or unprofitable (ROI <= 0) returns within one year. We propose MineROI-Net, an open source Transformer-based architecture designed to capture multi-scale temporal patterns in mining profitability. Evaluated on data from 20 ASIC miners released between 2015 and 2024 across diverse market regimes, MineROI-Net outperforms LSTM-based and TSLANet baselines, achieving 83.7% accuracy and 83.1% macro F1-score. The model demonstrates strong economic relevance, achieving 93.6% precision in detecting unprofitable periods and 98.5% precision for profitable ones, while avoiding misclassification of profitable scenarios as unprofitable and vice versa. These results indicate that MineROI-Net offers a practical, data-driven tool for timing mining hardware acquisitions, potentially reducing financial risk in capital-intensive mining operations. The model is available through: https://github.com/AMAAI-Lab/MineROI-Net.

DeepTravel: An End-to-End Agentic Reinforcement Learning Framework for Autonomous Travel Planning Agents

Travel planning (TP) agent has recently worked as an emerging building block to interact with external tools and resources for travel itinerary generation, ensuring enjoyable user experience. Despite its benefits, existing studies rely on hand craft prompt and fixed agent workflow, hindering more flexible and autonomous TP agent. This paper proposes DeepTravel, an end to end agentic reinforcement learning framework for building autonomous travel planning agent, capable of autonomously planning, executing tools, and reflecting on tool responses to explore, verify, and refine intermediate actions in multi step reasoning. To achieve this, we first construct a robust sandbox environment by caching transportation, accommodation and POI data, facilitating TP agent training without being constrained by real world APIs limitations (e.g., inconsistent outputs). Moreover, we develop a hierarchical reward modeling system, where a trajectory level verifier first checks spatiotemporal feasibility and filters unsatisfied travel itinerary, and then the turn level verifier further validate itinerary detail consistency with tool responses, enabling efficient and precise reward service. Finally, we propose the reply augmented reinforcement learning method that enables TP agent to periodically replay from a failures experience buffer, emerging notable agentic capacity. We deploy trained TP agent on DiDi Enterprise Solutions App and conduct comprehensive online and offline evaluations, demonstrating that DeepTravel enables small size LLMs (e.g., Qwen3 32B) to significantly outperform existing frontier LLMs such as OpenAI o1, o3 and DeepSeek R1 in travel planning tasks.

Didichuxing Didi Chuxing
·
Sep 26, 2025 2

Let Me Do It For You: Towards LLM Empowered Recommendation via Tool Learning

Conventional recommender systems (RSs) face challenges in precisely capturing users' fine-grained preferences. Large language models (LLMs) have shown capabilities in commonsense reasoning and leveraging external tools that may help address these challenges. However, existing LLM-based RSs suffer from hallucinations, misalignment between the semantic space of items and the behavior space of users, or overly simplistic control strategies (e.g., whether to rank or directly present existing results). To bridge these gap, we introduce ToolRec, a framework for LLM-empowered recommendations via tool learning that uses LLMs as surrogate users, thereby guiding the recommendation process and invoking external tools to generate a recommendation list that aligns closely with users' nuanced preferences. We formulate the recommendation process as a process aimed at exploring user interests in attribute granularity. The process factors in the nuances of the context and user preferences. The LLM then invokes external tools based on a user's attribute instructions and probes different segments of the item pool. We consider two types of attribute-oriented tools: rank tools and retrieval tools. Through the integration of LLMs, ToolRec enables conventional recommender systems to become external tools with a natural language interface. Extensive experiments verify the effectiveness of ToolRec, particularly in scenarios that are rich in semantic content.

  • 6 authors
·
May 23, 2024

MolAct: An Agentic RL Framework for Molecular Editing and Property Optimization

Molecular editing and optimization are multi-step problems that require iteratively improving properties while keeping molecules chemically valid and structurally similar. We frame both tasks as sequential, tool-guided decisions and introduce MolAct, an agentic reinforcement learning framework that employs a two-stage training paradigm: first building editing capability, then optimizing properties while reusing the learned editing behaviors. To the best of our knowledge, this is the first work to formalize molecular design as an Agentic Reinforcement Learning problem, where an LLM agent learns to interleave reasoning, tool-use, and molecular optimization. The framework enables agents to interact in multiple turns, invoking chemical tools for validity checking, property assessment, and similarity control, and leverages their feedback to refine subsequent edits. We instantiate the MolAct framework to train two model families: MolEditAgent for molecular editing tasks and MolOptAgent for molecular optimization tasks. In molecular editing, MolEditAgent-7B delivers 100, 95, and 98 valid add, delete, and substitute edits, outperforming strong closed "thinking" baselines such as DeepSeek-R1; MolEditAgent-3B approaches the performance of much larger open "thinking" models like Qwen3-32B-think. In molecular optimization, MolOptAgent-7B (trained on MolEditAgent-7B) surpasses the best closed "thinking" baseline (e.g., Claude 3.7) on LogP and remains competitive on solubility, while maintaining balanced performance across other objectives. These results highlight that treating molecular design as a multi-step, tool-augmented process is key to reliable and interpretable improvements.

  • 10 authors
·
Dec 23, 2025

Equivariant Graph Attention Networks with Structural Motifs for Predicting Cell Line-Specific Synergistic Drug Combinations

Cancer is the second leading cause of death, with chemotherapy as one of the primary forms of treatment. As a result, researchers are turning to drug combination therapy to decrease drug resistance and increase efficacy. Current methods of drug combination screening, such as in vivo and in vitro, are inefficient due to stark time and monetary costs. In silico methods have become increasingly important for screening drugs, but current methods are inaccurate and generalize poorly to unseen anticancer drugs. In this paper, I employ a geometric deep-learning model utilizing a graph attention network that is equivariant to 3D rotations, translations, and reflections with structural motifs. Additionally, the gene expression of cancer cell lines is utilized to classify synergistic drug combinations specific to each cell line. I compared the proposed geometric deep learning framework to current state-of-the-art (SOTA) methods, and the proposed model architecture achieved greater performance on all 12 benchmark tasks performed on the DrugComb dataset. Specifically, the proposed framework outperformed other SOTA methods by an accuracy difference greater than 28%. Based on these results, I believe that the equivariant graph attention network's capability of learning geometric data accounts for the large performance improvements. The model's ability to generalize to foreign drugs is thought to be due to the structural motifs providing a better representation of the molecule. Overall, I believe that the proposed equivariant geometric deep learning framework serves as an effective tool for virtually screening anticancer drug combinations for further validation in a wet lab environment. The code for this work is made available online at: https://github.com/WeToTheMoon/EGAT_DrugSynergy.

  • 1 authors
·
Nov 7, 2024

Hierarchical Reinforcement Learning for Articulated Tool Manipulation with Multifingered Hand

Manipulating articulated tools, such as tweezers or scissors, has rarely been explored in previous research. Unlike rigid tools, articulated tools change their shape dynamically, creating unique challenges for dexterous robotic hands. In this work, we present a hierarchical, goal-conditioned reinforcement learning (GCRL) framework to improve the manipulation capabilities of anthropomorphic robotic hands using articulated tools. Our framework comprises two policy layers: (1) a low-level policy that enables the dexterous hand to manipulate the tool into various configurations for objects of different sizes, and (2) a high-level policy that defines the tool's goal state and controls the robotic arm for object-picking tasks. We employ an encoder, trained on synthetic pointclouds, to estimate the tool's affordance states--specifically, how different tool configurations (e.g., tweezer opening angles) enable grasping of objects of varying sizes--from input point clouds, thereby enabling precise tool manipulation. We also utilize a privilege-informed heuristic policy to generate replay buffer, improving the training efficiency of the high-level policy. We validate our approach through real-world experiments, showing that the robot can effectively manipulate a tweezer-like tool to grasp objects of diverse shapes and sizes with a 70.8 % success rate. This study highlights the potential of RL to advance dexterous robotic manipulation of articulated tools.

  • 4 authors
·
Jul 9, 2025

Thinking With Videos: Multimodal Tool-Augmented Reinforcement Learning for Long Video Reasoning

The video reasoning ability of multimodal large language models (MLLMs) is crucial for downstream tasks like video question answering and temporal grounding. While recent approaches have explored text-based chain-of-thought (CoT) reasoning for MLLMs, these methods often suffer from limited cross-modal interaction and increased hallucination, especially with longer videos or reasoning chains. To address these challenges, we propose Video Intelligence via Tool-Augmented Learning (VITAL), a novel end-to-end agentic video reasoning framework. With a visual toolbox, the model can densely sample new video frames on demand and generate multimodal CoT for precise long video reasoning. We observe that temporal grounding and question answering are mutually beneficial for video understanding tasks. Therefore, we construct two high-quality multi-task video reasoning datasets MTVR-CoT-72k for supervised fine-tuning and MTVR-RL-110k for reinforcement learning. Moreover, we propose a Difficulty-aware Group Relative Policy Optimization algorithm (DGRPO) to mitigate difficulty imbalance in multi-task reinforcement learning. Extensive experiments on 11 challenging video understanding benchmarks demonstrate the advanced reasoning ability of VITAL, outperforming existing methods in video question answering and temporal grounding tasks, especially in long video scenarios. All code, data and model weight will be made publicly available.

  • 10 authors
·
Aug 6, 2025

Feedback-Driven Tool-Use Improvements in Large Language Models via Automated Build Environments

Effective tool use is essential for large language models (LLMs) to interact meaningfully with their environment. However, progress is limited by the lack of efficient reinforcement learning (RL) frameworks specifically designed for tool use, due to challenges in constructing stable training environments and designing verifiable reward mechanisms. To address this, we propose an automated environment construction pipeline, incorporating scenario decomposition, document generation, function integration, complexity scaling, and localized deployment. This enables the creation of high-quality training environments that provide detailed and measurable feedback without relying on external tools. Additionally, we introduce a verifiable reward mechanism that evaluates both the precision of tool use and the completeness of task execution. When combined with trajectory data collected from the constructed environments, this mechanism integrates seamlessly with standard RL algorithms to facilitate feedback-driven model training. Experiments on LLMs of varying scales demonstrate that our approach significantly enhances the models' tool-use performance without degrading their general capabilities, regardless of inference modes or training algorithms. Our analysis suggests that these gains result from improved context understanding and reasoning, driven by updates to the lower-layer MLP parameters in models.

  • 10 authors
·
Aug 12, 2025 2

VerlTool: Towards Holistic Agentic Reinforcement Learning with Tool Use

Reinforcement Learning with Verifiable Rewards (RLVR) has demonstrated success in enhancing LLM reasoning capabilities, but remains limited to single-turn interactions without tool integration. While recent Agentic Reinforcement Learning with Tool use (ARLT) approaches have emerged to address multi-turn tool interactions, existing works develop task-specific codebases that suffer from fragmentation, synchronous execution bottlenecks, and limited extensibility across domains. These inefficiencies hinder broader community adoption and algorithmic innovation. We introduce VerlTool, a unified and modular framework that addresses these limitations through systematic design principles. VerlTool provides four key contributions: (1) upstream alignment with VeRL ensuring compatibility and simplified maintenance, (2) unified tool management via standardized APIs supporting diverse modalities including code execution, search, SQL databases, and vision processing, (3) asynchronous rollout execution achieving near 2times speedup by eliminating synchronization bottlenecks, and (4) comprehensive evaluation demonstrating competitive performance across 6 ARLT domains. Our framework formalizes ARLT as multi-turn trajectories with multi-modal observation tokens (text/image/video), extending beyond single-turn RLVR paradigms. We train and evaluate models on mathematical reasoning, knowledge QA, SQL generation, visual reasoning, web search, and software engineering tasks, achieving results comparable to specialized systems while providing unified training infrastructure. The modular plugin architecture enables rapid tool integration requiring only lightweight Python definitions, significantly reducing development overhead and providing a scalable foundation for tool-augmented RL research. Our code is open-sourced at https://github.com/TIGER-AI-Lab/verl-tool.

TIGER-Lab TIGER-Lab
·
Aug 31, 2025 4

CuES: A Curiosity-driven and Environment-grounded Synthesis Framework for Agentic RL

Large language model based agents are increasingly deployed in complex, tool augmented environments. While reinforcement learning provides a principled mechanism for such agents to improve through interaction, its effectiveness critically depends on the availability of structured training tasks. In many realistic settings, however, no such tasks exist a challenge we term task scarcity, which has become a key bottleneck for scaling agentic RL. Existing approaches typically assume predefined task collections, an assumption that fails in novel environments where tool semantics and affordances are initially unknown. To address this limitation, we formalize the problem of Task Generation for Agentic RL, where an agent must learn within a given environment that lacks predefined tasks. We propose CuES, a Curiosity driven and Environment grounded Synthesis framework that autonomously generates diverse, executable, and meaningful tasks directly from the environment structure and affordances, without relying on handcrafted seeds or external corpora. CuES drives exploration through intrinsic curiosity, abstracts interaction patterns into reusable task schemas, and refines them through lightweight top down guidance and memory based quality control. Across three representative environments, AppWorld, BFCL, and WebShop, CuES produces task distributions that match or surpass manually curated datasets in both diversity and executability, yielding substantial downstream policy improvements. These results demonstrate that curiosity driven, environment grounded task generation provides a scalable foundation for agents that not only learn how to act, but also learn what to learn. The code is available at https://github.com/modelscope/AgentEvolver/tree/main/research/CuES.

  • 8 authors
·
Dec 1, 2025

Toward Effective Tool-Integrated Reasoning via Self-Evolved Preference Learning

Tool-Integrated Reasoning (TIR) enables large language models (LLMs) to improve their internal reasoning ability by integrating external tools. However, models employing TIR often display suboptimal behaviors, such as insufficient or excessive tool usage and overthinking after tool calls. The challenge of incentivizing LLMs to perform TIR efficiently and accurately, while stabilizing the reasoning process, remains an open question. In this paper, we start by exploring the impact of tool calls on model reasoning from the perspective of information entropy. Our findings indicate that tool call results lead to a distinct change in the information entropy of subsequent reasoning, with the overall entropy of the reasoning chain varying based on the number of tool calls. Building on these insights, we propose Tool-Light, a framework designed to encourage LLMs to perform TIR efficiently and accurately. Our framework includes dataset construction and multi-stage fine-tuning. For dataset construction, we employ continuous self-evolved sampling using the fine-tuned model, integrating both vanilla sampling and entropy-guided sampling. Besides, we establish strict criteria for selecting positive-negative pairs during sampling. The training process involves a two-stage approach, comprising Supervised Fine-Tuning (SFT) and Self-Evolved Direct Preference Optimization (DPO). Experimental results on 10 datasets demonstrate the effectiveness of Tool-Light, significantly improving the model's efficiency in executing TIR tasks.

OTC: Optimal Tool Calls via Reinforcement Learning

Tool-integrated reasoning (TIR) augments large language models (LLMs) with the ability to invoke external tools, such as search engines and code interpreters, to solve tasks beyond the capabilities of language-only reasoning. While reinforcement learning (RL) has shown promise in improving TIR by optimizing final answer correctness, existing approaches often overlook the efficiency and cost associated with tool usage. This can lead to suboptimal behavior, including excessive tool calls that increase computational and financial overhead, or insufficient tool use that compromises answer quality. In this work, we propose Optimal Tool Call-controlled Policy Optimization (OTC-PO), a simple yet effective RL-based framework that encourages models to produce accurate answers with minimal tool calls. Our method introduces a tool-integrated reward that jointly considers correctness and tool efficiency, promoting high tool productivity. We instantiate this framework within both Proximal Policy Optimization (PPO) and Group Relative Preference Optimization (GRPO), resulting in OTC-PPO and OTC-GRPO. Experiments with Qwen-2.5 and Qwen-Math across multiple QA benchmarks show that our approach reduces tool calls by up to 73.1\% and improves tool productivity by up to 229.4\%, while maintaining comparable answer accuracy. To the best of our knowledge, this is the first RL-based framework that explicitly optimizes tool-use efficiency in TIR.

  • 10 authors
·
Apr 21, 2025 2

Data-Efficient Massive Tool Retrieval: A Reinforcement Learning Approach for Query-Tool Alignment with Language Models

Recent advancements in large language models (LLMs) integrated with external tools and APIs have successfully addressed complex tasks by using in-context learning or fine-tuning. Despite this progress, the vast scale of tool retrieval remains challenging due to stringent input length constraints. In response, we propose a pre-retrieval strategy from an extensive repository, effectively framing the problem as the massive tool retrieval (MTR) task. We introduce the MTRB (massive tool retrieval benchmark) to evaluate real-world tool-augmented LLM scenarios with a large number of tools. This benchmark is designed for low-resource scenarios and includes a diverse collection of tools with descriptions refined for consistency and clarity. It consists of three subsets, each containing 90 test samples and 10 training samples. To handle the low-resource MTR task, we raise a new query-tool alignment (QTA) framework leverages LLMs to enhance query-tool alignment by rewriting user queries through ranking functions and the direct preference optimization (DPO) method. This approach consistently outperforms existing state-of-the-art models in top-5 and top-10 retrieval tasks across the MTRB benchmark, with improvements up to 93.28% based on the metric Sufficiency@k, which measures the adequacy of tool retrieval within the first k results. Furthermore, ablation studies validate the efficacy of our framework, highlighting its capacity to optimize performance even with limited annotated samples. Specifically, our framework achieves up to 78.53% performance improvement in Sufficiency@k with just a single annotated sample. Additionally, QTA exhibits strong cross-dataset generalizability, emphasizing its potential for real-world applications.

  • 7 authors
·
Oct 4, 2024

Tool-Star: Empowering LLM-Brained Multi-Tool Reasoner via Reinforcement Learning

Recently, large language models (LLMs) have shown remarkable reasoning capabilities via large-scale reinforcement learning (RL). However, leveraging the RL algorithm to empower effective multi-tool collaborative reasoning in LLMs remains an open challenge. In this paper, we introduce Tool-Star, an RL-based framework designed to empower LLMs to autonomously invoke multiple external tools during stepwise reasoning. Tool-Star integrates six types of tools and incorporates systematic designs in both data synthesis and training. To address the scarcity of tool-use data, we propose a general tool-integrated reasoning data synthesis pipeline, which combines tool-integrated prompting with hint-based sampling to automatically and scalably generate tool-use trajectories. A subsequent quality normalization and difficulty-aware classification process filters out low-quality samples and organizes the dataset from easy to hard. Furthermore, we propose a two-stage training framework to enhance multi-tool collaborative reasoning by: (1) cold-start fine-tuning, which guides LLMs to explore reasoning patterns via tool-invocation feedback; and (2) a multi-tool self-critic RL algorithm with hierarchical reward design, which reinforces reward understanding and promotes effective tool collaboration. Experimental analyses on over 10 challenging reasoning benchmarks highlight the effectiveness and efficiency of Tool-Star. The code is available at https://github.com/dongguanting/Tool-Star.

  • 10 authors
·
May 22, 2025 2

MyCrunchGPT: A chatGPT assisted framework for scientific machine learning

Scientific Machine Learning (SciML) has advanced recently across many different areas in computational science and engineering. The objective is to integrate data and physics seamlessly without the need of employing elaborate and computationally taxing data assimilation schemes. However, preprocessing, problem formulation, code generation, postprocessing and analysis are still time consuming and may prevent SciML from wide applicability in industrial applications and in digital twin frameworks. Here, we integrate the various stages of SciML under the umbrella of ChatGPT, to formulate MyCrunchGPT, which plays the role of a conductor orchestrating the entire workflow of SciML based on simple prompts by the user. Specifically, we present two examples that demonstrate the potential use of MyCrunchGPT in optimizing airfoils in aerodynamics, and in obtaining flow fields in various geometries in interactive mode, with emphasis on the validation stage. To demonstrate the flow of the MyCrunchGPT, and create an infrastructure that can facilitate a broader vision, we built a webapp based guided user interface, that includes options for a comprehensive summary report. The overall objective is to extend MyCrunchGPT to handle diverse problems in computational mechanics, design, optimization and controls, and general scientific computing tasks involved in SciML, hence using it as a research assistant tool but also as an educational tool. While here the examples focus in fluid mechanics, future versions will target solid mechanics and materials science, geophysics, systems biology and bioinformatics.

  • 5 authors
·
Jun 27, 2023

Agentic Reasoning and Tool Integration for LLMs via Reinforcement Learning

Large language models (LLMs) have achieved remarkable progress in complex reasoning tasks, yet they remain fundamentally limited by their reliance on static internal knowledge and text-only reasoning. Real-world problem solving often demands dynamic, multi-step reasoning, adaptive decision making, and the ability to interact with external tools and environments. In this work, we introduce ARTIST (Agentic Reasoning and Tool Integration in Self-improving Transformers), a unified framework that tightly couples agentic reasoning, reinforcement learning, and tool integration for LLMs. ARTIST enables models to autonomously decide when, how, and which tools to invoke within multi-turn reasoning chains, leveraging outcome-based RL to learn robust strategies for tool use and environment interaction without requiring step-level supervision. Extensive experiments on mathematical reasoning and multi-turn function calling benchmarks show that ARTIST consistently outperforms state-of-the-art baselines, with up to 22% absolute improvement over base models and strong gains on the most challenging tasks. Detailed studies and metric analyses reveal that agentic RL training leads to deeper reasoning, more effective tool use, and higher-quality solutions. Our results establish agentic RL with tool integration as a powerful new frontier for robust, interpretable, and generalizable problem-solving in LLMs.

  • 4 authors
·
Apr 28, 2025 2

Transformer-Based Models Are Not Yet Perfect At Learning to Emulate Structural Recursion

This paper investigates the ability of transformer-based models to learn structural recursion from examples. Recursion is a universal concept in both natural and formal languages. Structural recursion is central to the programming language and formal mathematics tasks where symbolic tools currently excel beyond neural models, such as inferring semantic relations between datatypes and emulating program behavior. We introduce a general framework that nicely connects the abstract concepts of structural recursion in the programming language domain to concrete sequence modeling problems and learned models' behavior. The framework includes a representation that captures the general syntax of structural recursion, coupled with two different frameworks for understanding their semantics -- one that is more natural from a programming languages perspective and one that helps bridge that perspective with a mechanistic understanding of the underlying transformer architecture. With our framework as a powerful conceptual tool, we identify different issues under various set-ups. The models trained to emulate recursive computations cannot fully capture the recursion yet instead fit short-cut algorithms and thus cannot solve certain edge cases that are under-represented in the training distribution. In addition, it is difficult for state-of-the-art large language models (LLMs) to mine recursive rules from in-context demonstrations. Meanwhile, these LLMs fail in interesting ways when emulating reduction (step-wise computation) of the recursive function.

  • 6 authors
·
Jan 23, 2024 2

SpaceTools: Tool-Augmented Spatial Reasoning via Double Interactive RL

Vision Language Models (VLMs) demonstrate strong qualitative visual understanding, but struggle with metrically precise spatial reasoning required for embodied applications. The agentic paradigm promises that VLMs can use a wide variety of tools that could augment these capabilities, such as depth estimators, segmentation models, and pose estimators. Yet it remains an open challenge how to realize this vision without solely relying on handcrafted prompting strategies or enforcing fixed, predefined tool pipelines that limit VLMs' ability to discover optimal tool-use patterns. Reinforcement Learning could overcome this gap, but has so far been limited to reasoning with a single visual tool due to the large search space in multi-tool reasoning. We introduce Double Interactive Reinforcement Learning (DIRL), a two-phase training framework where VLMs learn to coordinate multiple tools through interactive exploration and feedback. In the teaching phase, we combine demonstrations from a single tool specialist trained via interactive RL with traces from a frontier model using all tools. In the exploration phase, the model further refines multi-tool coordination through continued RL. Our model, SpaceTools, with tool-augmented spatial reasoning ability, achieves state-of-the-art performance on spatial understanding benchmarks (RoboSpatial-Home, BLINK, BOP-ASK) and demonstrates reliable real-world manipulation using a 7-DOF robot as a tool. DIRL provides substantial improvements over the vanilla SFT (+12% on RoboSpatial) and RL (+16% on RoboSpatial) baselines. Project page: https://spacetools.github.io/.

nvidia NVIDIA
·
Dec 3, 2025 2

Federated Learning over 5G, WiFi, and Ethernet: Measurements and Evaluation

Federated Learning (FL) deployments using IoT devices is an area that is poised to significantly benefit from advances in NextG wireless. In this paper, we deploy a FL application using a 5G-NR Standalone (SA) testbed with open-source and Commercial Off-the-Shelf (COTS) components. The 5G testbed architecture consists of a network of resource-constrained edge devices, namely Raspberry Pi's, and a central server equipped with a Software Defined Radio (SDR) and running O-RAN software. Our testbed allows edge devices to communicate with the server using WiFi and Ethernet, instead of 5G. FL is deployed using the Flower FL framework, for which we developed a comprehensive instrumentation tool to collect and analyze diverse communications and machine learning performance metrics including: model aggregation time, downlink transmission time, training time, and uplink transmission time. Leveraging these measurements, we perform a comparative analysis of the FL application across three network interfaces: 5G, WiFi, and Ethernet. Our experimental results suggest that, on 5G, the uplink model transfer time is a significant factor in convergence time of FL. In particular, we find that the 5G uplink contributes to roughly 23% of the duration of one average communication round when using all edge devices in our testbed. When comparing the uplink time of the 5G testbed, we find that it is 33.3x higher than Ethernet and 17.8x higher than WiFi. Our results also suggest that 5G exacerbates the well-known straggler effect. For reproducibility, we have open-sourced our FL application, instrumentation tools, and testbed configuration.

  • 6 authors
·
Apr 6, 2025

VideoChat-M1: Collaborative Policy Planning for Video Understanding via Multi-Agent Reinforcement Learning

By leveraging tool-augmented Multimodal Large Language Models (MLLMs), multi-agent frameworks are driving progress in video understanding. However, most of them adopt static and non-learnable tool invocation mechanisms, which limit the discovery of diverse clues essential for robust perception and reasoning regarding temporally or spatially complex videos. To address this challenge, we propose a novel Multi-agent system for video understanding, namely VideoChat-M1. Instead of using a single or fixed policy, VideoChat-M1 adopts a distinct Collaborative Policy Planning (CPP) paradigm with multiple policy agents, which comprises three key processes. (1) Policy Generation: Each agent generates its unique tool invocation policy tailored to the user's query; (2) Policy Execution: Each agent sequentially invokes relevant tools to execute its policy and explore the video content; (3) Policy Communication: During the intermediate stages of policy execution, agents interact with one another to update their respective policies. Through this collaborative framework, all agents work in tandem, dynamically refining their preferred policies based on contextual insights from peers to effectively respond to the user's query. Moreover, we equip our CPP paradigm with a concise Multi-Agent Reinforcement Learning (MARL) method. Consequently, the team of policy agents can be jointly optimized to enhance VideoChat-M1's performance, guided by both the final answer reward and intermediate collaborative process feedback. Extensive experiments demonstrate that VideoChat-M1 achieves SOTA performance across eight benchmarks spanning four tasks. Notably, on LongVideoBench, our method outperforms the SOTA model Gemini 2.5 pro by 3.6% and GPT-4o by 15.6%.

  • 12 authors
·
Nov 24, 2025

Robust Model-based Reinforcement Learning for Autonomous Greenhouse Control

Due to the high efficiency and less weather dependency, autonomous greenhouses provide an ideal solution to meet the increasing demand for fresh food. However, managers are faced with some challenges in finding appropriate control strategies for crop growth, since the decision space of the greenhouse control problem is an astronomical number. Therefore, an intelligent closed-loop control framework is highly desired to generate an automatic control policy. As a powerful tool for optimal control, reinforcement learning (RL) algorithms can surpass human beings' decision-making and can also be seamlessly integrated into the closed-loop control framework. However, in complex real-world scenarios such as agricultural automation control, where the interaction with the environment is time-consuming and expensive, the application of RL algorithms encounters two main challenges, i.e., sample efficiency and safety. Although model-based RL methods can greatly mitigate the efficiency problem of greenhouse control, the safety problem has not got too much attention. In this paper, we present a model-based robust RL framework for autonomous greenhouse control to meet the sample efficiency and safety challenges. Specifically, our framework introduces an ensemble of environment models to work as a simulator and assist in policy optimization, thereby addressing the low sample efficiency problem. As for the safety concern, we propose a sample dropout module to focus more on worst-case samples, which can help improve the adaptability of the greenhouse planting policy in extreme cases. Experimental results demonstrate that our approach can learn a more effective greenhouse planting policy with better robustness than existing methods.

  • 6 authors
·
Aug 26, 2021

TPTU-v2: Boosting Task Planning and Tool Usage of Large Language Model-based Agents in Real-world Systems

Large Language Models (LLMs) have demonstrated proficiency in addressing tasks that necessitate a combination of task planning and the usage of external tools that require a blend of task planning and the utilization of external tools, such as APIs. However, real-world complex systems present three prevalent challenges concerning task planning and tool usage: (1) The real system usually has a vast array of APIs, so it is impossible to feed the descriptions of all APIs to the prompt of LLMs as the token length is limited; (2) the real system is designed for handling complex tasks, and the base LLMs can hardly plan a correct sub-task order and API-calling order for such tasks; (3) Similar semantics and functionalities among APIs in real systems create challenges for both LLMs and even humans in distinguishing between them. In response, this paper introduces a comprehensive framework aimed at enhancing the Task Planning and Tool Usage (TPTU) abilities of LLM-based agents operating within real-world systems. Our framework comprises three key components designed to address these challenges: (1) the API Retriever selects the most pertinent APIs for the user task among the extensive array available; (2) LLM Finetuner tunes a base LLM so that the finetuned LLM can be more capable for task planning and API calling; (3) the Demo Selector adaptively retrieves different demonstrations related to hard-to-distinguish APIs, which is further used for in-context learning to boost the final performance. We validate our methods using a real-world commercial system as well as an open-sourced academic dataset, and the outcomes clearly showcase the efficacy of each individual component as well as the integrated framework.

  • 12 authors
·
Nov 19, 2023 2

Agent2World: Learning to Generate Symbolic World Models via Adaptive Multi-Agent Feedback

Symbolic world models (e.g., PDDL domains or executable simulators) are central to model-based planning, but training LLMs to generate such world models is limited by the lack of large-scale verifiable supervision. Current approaches rely primarily on static validation methods that fail to catch behavior-level errors arising from interactive execution. In this paper, we propose Agent2World, a tool-augmented multi-agent framework that achieves strong inference-time world-model generation and also serves as a data engine for supervised fine-tuning, by grounding generation in multi-agent feedback. Agent2World follows a three-stage pipeline: (i) A Deep Researcher agent performs knowledge synthesis by web searching to address specification gaps; (ii) A Model Developer agent implements executable world models; And (iii) a specialized Testing Team conducts adaptive unit testing and simulation-based validation. Agent2World demonstrates superior inference-time performance across three benchmarks spanning both Planning Domain Definition Language (PDDL) and executable code representations, achieving consistent state-of-the-art results. Beyond inference, Testing Team serves as an interactive environment for the Model Developer, providing behavior-aware adaptive feedback that yields multi-turn training trajectories. The model fine-tuned on these trajectories substantially improves world-model generation, yielding an average relative gain of 30.95% over the same model before training. Project page: https://agent2world.github.io.

  • 12 authors
·
Dec 26, 2025

Foam-Agent 2.0: An End-to-End Composable Multi-Agent Framework for Automating CFD Simulation in OpenFOAM

Computational Fluid Dynamics (CFD) is an essential simulation tool in engineering, yet its steep learning curve and complex manual setup create significant barriers. To address these challenges, we introduce Foam-Agent, a multi-agent framework that automates the entire end-to-end OpenFOAM workflow from a single natural language prompt. Our key innovations address critical gaps in existing systems: 1. An Comprehensive End-to-End Simulation Automation: Foam-Agent is the first system to manage the full simulation pipeline, including advanced pre-processing with a versatile Meshing Agent capable of handling external mesh files and generating new geometries via Gmsh, automatic generation of HPC submission scripts, and post-simulation visualization via ParaView. 2. Composable Service Architecture: Going beyond a monolithic agent, the framework uses Model Context Protocol (MCP) to expose its core functions as discrete, callable tools. This allows for flexible integration and use by other agentic systems, such as Claude-code, for more exploratory workflows. 3. High-Fidelity Configuration Generation: We achieve superior accuracy through a Hierarchical Multi-Index RAG for precise context retrieval and a dependency-aware generation process that ensures configuration consistency. Evaluated on a benchmark of 110 simulation tasks, Foam-Agent achieves an 88.2% success rate with Claude 3.5 Sonnet, significantly outperforming existing frameworks (55.5% for MetaOpenFOAM). Foam-Agent dramatically lowers the expertise barrier for CFD, demonstrating how specialized multi-agent systems can democratize complex scientific computing. The code is public at https://github.com/csml-rpi/Foam-Agent.

  • 5 authors
·
Sep 17, 2025

OWL: Optimized Workforce Learning for General Multi-Agent Assistance in Real-World Task Automation

Large Language Model (LLM)-based multi-agent systems show promise for automating real-world tasks but struggle to transfer across domains due to their domain-specific nature. Current approaches face two critical shortcomings: they require complete architectural redesign and full retraining of all components when applied to new domains. We introduce Workforce, a hierarchical multi-agent framework that decouples strategic planning from specialized execution through a modular architecture comprising: (i) a domain-agnostic Planner for task decomposition, (ii) a Coordinator for subtask management, and (iii) specialized Workers with domain-specific tool-calling capabilities. This decoupling enables cross-domain transferability during both inference and training phases: During inference, Workforce seamlessly adapts to new domains by adding or modifying worker agents; For training, we introduce Optimized Workforce Learning (OWL), which improves generalization across domains by optimizing a domain-agnostic planner with reinforcement learning from real-world feedback. To validate our approach, we evaluate Workforce on the GAIA benchmark, covering various realistic, multi-domain agentic tasks. Experimental results demonstrate Workforce achieves open-source state-of-the-art performance (69.70%), outperforming commercial systems like OpenAI's Deep Research by 2.34%. More notably, our OWL-trained 32B model achieves 52.73% accuracy (+16.37%) and demonstrates performance comparable to GPT-4o on challenging tasks. To summarize, by enabling scalable generalization and modular domain transfer, our work establishes a foundation for the next generation of general-purpose AI assistants.

  • 16 authors
·
May 29, 2025

ReAgent-V: A Reward-Driven Multi-Agent Framework for Video Understanding

Video understanding is fundamental to tasks such as action recognition, video reasoning, and robotic control. Early video understanding methods based on large vision-language models (LVLMs) typically adopt a single-pass reasoning paradigm without dynamic feedback, limiting the model's capacity to self-correct and adapt in complex scenarios. Recent efforts have attempted to address this limitation by incorporating reward models and reinforcement learning to enhance reasoning, or by employing tool-agent frameworks. However, these approaches face several challenges, including high annotation costs, reward signals that fail to capture real-time reasoning states, and low inference efficiency. To overcome these issues, we propose ReAgent-V, a novel agentic video understanding framework that integrates efficient frame selection with real-time reward generation during inference. These reward signals not only guide iterative answer refinement through a multi-perspective reflection mechanism-adjusting predictions from conservative, neutral, and aggressive viewpoints-but also enable automatic filtering of high-quality data for supervised fine-tuning (SFT), direct preference optimization (DPO), and group relative policy optimization (GRPO). ReAgent-V is lightweight, modular, and extensible, supporting flexible tool integration tailored to diverse tasks. Extensive experiments on 12 datasets across three core applications-video understanding, video reasoning enhancement, and vision-language-action model alignment-demonstrate significant gains in generalization and reasoning, with improvements of up to 6.9%, 2.1%, and 9.8%, respectively, highlighting the effectiveness and versatility of the proposed framework.

  • 8 authors
·
Jun 2, 2025

COMEX: A Tool for Generating Customized Source Code Representations

Learning effective representations of source code is critical for any Machine Learning for Software Engineering (ML4SE) system. Inspired by natural language processing, large language models (LLMs) like Codex and CodeGen treat code as generic sequences of text and are trained on huge corpora of code data, achieving state of the art performance on several software engineering (SE) tasks. However, valid source code, unlike natural language, follows a strict structure and pattern governed by the underlying grammar of the programming language. Current LLMs do not exploit this property of the source code as they treat code like a sequence of tokens and overlook key structural and semantic properties of code that can be extracted from code-views like the Control Flow Graph (CFG), Data Flow Graph (DFG), Abstract Syntax Tree (AST), etc. Unfortunately, the process of generating and integrating code-views for every programming language is cumbersome and time consuming. To overcome this barrier, we propose our tool COMEX - a framework that allows researchers and developers to create and combine multiple code-views which can be used by machine learning (ML) models for various SE tasks. Some salient features of our tool are: (i) it works directly on source code (which need not be compilable), (ii) it currently supports Java and C#, (iii) it can analyze both method-level snippets and program-level snippets by using both intra-procedural and inter-procedural analysis, and (iv) it is easily extendable to other languages as it is built on tree-sitter - a widely used incremental parser that supports over 40 languages. We believe this easy-to-use code-view generation and customization tool will give impetus to research in source code representation learning methods and ML4SE. Tool: https://pypi.org/project/comex - GitHub: https://github.com/IBM/tree-sitter-codeviews - Demo: https://youtu.be/GER6U87FVbU

  • 7 authors
·
Jul 10, 2023

Multi-Similarity Loss with General Pair Weighting for Deep Metric Learning

A family of loss functions built on pair-based computation have been proposed in the literature which provide a myriad of solutions for deep metric learning. In this paper, we provide a general weighting framework for understanding recent pair-based loss functions. Our contributions are three-fold: (1) we establish a General Pair Weighting (GPW) framework, which casts the sampling problem of deep metric learning into a unified view of pair weighting through gradient analysis, providing a powerful tool for understanding recent pair-based loss functions; (2) we show that with GPW, various existing pair-based methods can be compared and discussed comprehensively, with clear differences and key limitations identified; (3) we propose a new loss called multi-similarity loss (MS loss) under the GPW, which is implemented in two iterative steps (i.e., mining and weighting). This allows it to fully consider three similarities for pair weighting, providing a more principled approach for collecting and weighting informative pairs. Finally, the proposed MS loss obtains new state-of-the-art performance on four image retrieval benchmarks, where it outperforms the most recent approaches, such as ABEKim_2018_ECCV and HTL by a large margin: 60.6% to 65.7% on CUB200, and 80.9% to 88.0% on In-Shop Clothes Retrieval dataset at Recall@1. Code is available at https://github.com/MalongTech/research-ms-loss.

  • 5 authors
·
Apr 14, 2019

MedReseacher-R1: Expert-Level Medical Deep Researcher via A Knowledge-Informed Trajectory Synthesis Framework

Recent developments in Large Language Model (LLM)-based agents have shown impressive capabilities spanning multiple domains, exemplified by deep research systems that demonstrate superior performance on complex information-seeking and synthesis tasks. While general-purpose deep research agents have shown impressive capabilities, they struggle significantly with medical domain challenges, as evidenced by leading proprietary systems achieving limited accuracy on complex medical benchmarks. The key limitations are: (1) the model lacks sufficient dense medical knowledge for clinical reasoning, and (2) the framework is constrained by the absence of specialized retrieval tools tailored for medical contexts.We present a medical deep research agent that addresses these challenges through two core innovations. First, we develop a novel data synthesis framework using medical knowledge graphs, extracting the longest chains from subgraphs around rare medical entities to generate complex multi-hop question-answer pairs. Second, we integrate a custom-built private medical retrieval engine alongside general-purpose tools, enabling accurate medical information synthesis. Our approach generates 2100+ diverse trajectories across 12 medical specialties, each averaging 4.2 tool interactions.Through a two-stage training paradigm combining supervised fine-tuning and online reinforcement learning with composite rewards, our MedResearcher-R1-32B model demonstrates exceptional performance, establishing new state-of-the-art results on medical benchmarks while maintaining competitive performance on general deep research tasks. Our work demonstrates that strategic domain-specific innovations in architecture, tool design, and training data construction can enable smaller open-source models to outperform much larger proprietary systems in specialized domains.

  • 15 authors
·
Aug 20, 2025 2

SenseNova-MARS: Empowering Multimodal Agentic Reasoning and Search via Reinforcement Learning

While Vision-Language Models (VLMs) can solve complex tasks through agentic reasoning, their capabilities remain largely constrained to text-oriented chain-of-thought or isolated tool invocation. They fail to exhibit the human-like proficiency required to seamlessly interleave dynamic tool manipulation with continuous reasoning, particularly in knowledge-intensive and visually complex scenarios that demand coordinated external tools such as search and image cropping. In this work, we introduce SenseNova-MARS, a novel Multimodal Agentic Reasoning and Search framework that empowers VLMs with interleaved visual reasoning and tool-use capabilities via reinforcement learning (RL). Specifically, SenseNova-MARS dynamically integrates the image search, text search, and image crop tools to tackle fine-grained and knowledge-intensive visual understanding challenges. In the RL stage, we propose the Batch-Normalized Group Sequence Policy Optimization (BN-GSPO) algorithm to improve the training stability and advance the model's ability to invoke tools and reason effectively. To comprehensively evaluate the agentic VLMs on complex visual tasks, we introduce the HR-MMSearch benchmark, the first search-oriented benchmark composed of high-resolution images with knowledge-intensive and search-driven questions. Experiments demonstrate that SenseNova-MARS achieves state-of-the-art performance on open-source search and fine-grained image understanding benchmarks. Specifically, on search-oriented benchmarks, SenseNova-MARS-8B scores 67.84 on MMSearch and 41.64 on HR-MMSearch, surpassing proprietary models such as Gemini-3-Flash and GPT-5. SenseNova-MARS represents a promising step toward agentic VLMs by providing effective and robust tool-use capabilities. To facilitate further research in this field, we will release all code, models, and datasets.

sensenova SenseNova
·
Dec 30, 2025 3

Efficient and Scalable Estimation of Tool Representations in Vector Space

Recent advancements in function calling and tool use have significantly enhanced the capabilities of large language models (LLMs) by enabling them to interact with external information sources and execute complex tasks. However, the limited context window of LLMs presents challenges when a large number of tools are available, necessitating efficient methods to manage prompt length and maintain accuracy. Existing approaches, such as fine-tuning LLMs or leveraging their reasoning capabilities, either require frequent retraining or incur significant latency overhead. A more efficient solution involves training smaller models to retrieve the most relevant tools for a given query, although this requires high quality, domain-specific data. To address those challenges, we present a novel framework for generating synthetic data for tool retrieval applications and an efficient data-driven tool retrieval strategy using small encoder models. Empowered by LLMs, we create ToolBank, a new tool retrieval dataset that reflects real human user usages. For tool retrieval methodologies, we propose novel approaches: (1) Tool2Vec: usage-driven tool embedding generation for tool retrieval, (2) ToolRefiner: a staged retrieval method that iteratively improves the quality of retrieved tools, and (3) MLC: framing tool retrieval as a multi-label classification problem. With these new methods, we achieve improvements of up to 27.28 in Recall@K on the ToolBench dataset and 30.5 in Recall@K on ToolBank. Additionally, we present further experimental results to rigorously validate our methods. Our code is available at https://github.com/SqueezeAILab/Tool2Vec

  • 7 authors
·
Sep 2, 2024

Improving Tool Retrieval by Leveraging Large Language Models for Query Generation

Using tools by Large Language Models (LLMs) is a promising avenue to extend their reach beyond language or conversational settings. The number of tools can scale to thousands as they enable accessing sensory information, fetching updated factual knowledge, or taking actions in the real world. In such settings, in-context learning by providing a short list of relevant tools in the prompt is a viable approach. To retrieve relevant tools, various approaches have been suggested, ranging from simple frequency-based matching to dense embedding-based semantic retrieval. However, such approaches lack the contextual and common-sense understanding required to retrieve the right tools for complex user requests. Rather than increasing the complexity of the retrieval component itself, we propose leveraging LLM understanding to generate a retrieval query. Then, the generated query is embedded and used to find the most relevant tools via a nearest-neighbor search. We investigate three approaches for query generation: zero-shot prompting, supervised fine-tuning on tool descriptions, and alignment learning by iteratively optimizing a reward metric measuring retrieval performance. By conducting extensive experiments on a dataset covering complex and multi-tool scenarios, we show that leveraging LLMs for query generation improves the retrieval for in-domain (seen tools) and out-of-domain (unseen tools) settings.

  • 5 authors
·
Nov 16, 2024

From Exploration to Mastery: Enabling LLMs to Master Tools via Self-Driven Interactions

Tool learning enables Large Language Models (LLMs) to interact with external environments by invoking tools, serving as an effective strategy to mitigate the limitations inherent in their pre-training data. In this process, tool documentation plays a crucial role by providing usage instructions for LLMs, thereby facilitating effective tool utilization. This paper concentrates on the critical challenge of bridging the comprehension gap between LLMs and external tools due to the inadequacies and inaccuracies inherent in existing human-centric tool documentation. We propose a novel framework, DRAFT, aimed at Dynamically Refining tool documentation through the Analysis of Feedback and Trails emanating from LLMs' interactions with external tools. This methodology pivots on an innovative trial-and-error approach, consisting of three distinct learning phases: experience gathering, learning from experience, and documentation rewriting, to iteratively enhance the tool documentation. This process is further optimized by implementing a diversity-promoting exploration strategy to ensure explorative diversity and a tool-adaptive termination mechanism to prevent overfitting while enhancing efficiency. Extensive experiments on multiple datasets demonstrate that DRAFT's iterative, feedback-based refinement significantly ameliorates documentation quality, fostering a deeper comprehension and more effective utilization of tools by LLMs. Notably, our analysis reveals that the tool documentation refined via our approach demonstrates robust cross-model generalization capabilities.

  • 8 authors
·
Oct 10, 2024

Small LLMs Are Weak Tool Learners: A Multi-LLM Agent

Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs, empowering them to interact with external tools (e.g., APIs, functions) and complete complex tasks in a self-directed fashion. The challenge of tool use demands that LLMs not only understand user queries and generate answers but also excel in task planning, memory management, tool invocation, and result summarization. While traditional approaches focus on training a single LLM with all these capabilities, performance limitations become apparent, particularly with smaller models. Moreover, the entire LLM may require retraining when tools are updated. To overcome these challenges, we propose a novel strategy that decomposes the aforementioned capabilities into a planner, caller, and summarizer. Each component is implemented by a single LLM that focuses on a specific capability and collaborates with other components to accomplish the task. This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability. To effectively train this framework, we introduce a two-stage training paradigm. First, we fine-tune a backbone LLM on the entire dataset without discriminating sub-tasks, providing the model with a comprehensive understanding of the task. Second, the fine-tuned LLM is used to instantiate the planner, caller, and summarizer respectively, which are continually fine-tuned on respective sub-tasks. Evaluation across various tool-use benchmarks illustrates that our proposed multi-LLM framework surpasses the traditional single-LLM approach, highlighting its efficacy and advantages in tool learning.

  • 8 authors
·
Jan 14, 2024 2

ToolGen: Unified Tool Retrieval and Calling via Generation

As large language models (LLMs) advance, their inability to autonomously execute tasks by directly interacting with external tools remains a critical limitation. Traditional methods rely on inputting tool descriptions as context, which is constrained by context length and requires separate, often inefficient, retrieval mechanisms. We introduce ToolGen, a paradigm shift that integrates tool knowledge directly into the LLM's parameters by representing each tool as a unique token. This enables the LLM to generate tool calls and arguments as part of its next token prediction capabilities, seamlessly blending tool invocation with language generation. Our framework allows the LLM to access and utilize a vast amount of tools with no additional retrieval step, significantly enhancing both performance and scalability. Experimental results with over 47,000 tools show that ToolGen not only achieves superior results in both tool retrieval and autonomous task completion but also sets the stage for a new era of AI agents that can adapt to tools across diverse domains. By fundamentally transforming tool retrieval into a generative process, ToolGen paves the way for more versatile, efficient, and autonomous AI systems. ToolGen enables end-to-end tool learning and opens opportunities for integration with other advanced techniques such as chain-of-thought and reinforcement learning, thereby expanding the practical capabilities of LLMs.

  • 6 authors
·
Oct 4, 2024

Chain of Tools: Large Language Model is an Automatic Multi-tool Learner

Augmenting large language models (LLMs) with external tools has emerged as a promising approach to extend their utility, empowering them to solve practical tasks. Existing work typically empowers LLMs as tool users with a manually designed workflow, where the LLM plans a series of tools in a step-by-step manner, and sequentially executes each tool to obtain intermediate results until deriving the final answer. However, they suffer from two challenges in realistic scenarios: (1) The handcrafted control flow is often ad-hoc and constraints the LLM to local planning; (2) The LLM is instructed to use only manually demonstrated tools or well-trained Python functions, which limits its generalization to new tools. In this work, we first propose Automatic Tool Chain (ATC), a framework that enables the LLM to act as a multi-tool user, which directly utilizes a chain of tools through programming. To scale up the scope of the tools, we next propose a black-box probing method. This further empowers the LLM as a tool learner that can actively discover and document tool usages, teaching themselves to properly master new tools. For a comprehensive evaluation, we build a challenging benchmark named ToolFlow, which diverges from previous benchmarks by its long-term planning scenarios and complex toolset. Experiments on both existing datasets and ToolFlow illustrate the superiority of our framework. Analysis on different settings also validates the effectiveness and the utility of our black-box probing algorithm.

  • 10 authors
·
May 26, 2024

ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world APIs

Despite the advancements of open-source large language models (LLMs) and their variants, e.g., LLaMA and Vicuna, they remain significantly limited in performing higher-level tasks, such as following human instructions to use external tools (APIs). This is because current instruction tuning largely focuses on basic language tasks instead of the tool-use domain. This is in contrast to state-of-the-art (SOTA) LLMs, e.g., ChatGPT, which have demonstrated excellent tool-use capabilities but are unfortunately closed source. To facilitate tool-use capabilities within open-source LLMs, we introduce ToolLLM, a general tool-use framework of data construction, model training and evaluation. We first present ToolBench, an instruction-tuning dataset for tool use, which is created automatically using ChatGPT. Specifically, we collect 16,464 real-world RESTful APIs spanning 49 categories from RapidAPI Hub, then prompt ChatGPT to generate diverse human instructions involving these APIs, covering both single-tool and multi-tool scenarios. Finally, we use ChatGPT to search for a valid solution path (chain of API calls) for each instruction. To make the searching process more efficient, we develop a novel depth-first search-based decision tree (DFSDT), enabling LLMs to evaluate multiple reasoning traces and expand the search space. We show that DFSDT significantly enhances the planning and reasoning capabilities of LLMs. For efficient tool-use assessment, we develop an automatic evaluator: ToolEval. We fine-tune LLaMA on ToolBench and obtain ToolLLaMA. Our ToolEval reveals that ToolLLaMA demonstrates a remarkable ability to execute complex instructions and generalize to unseen APIs, and exhibits comparable performance to ChatGPT. To make the pipeline more practical, we devise a neural API retriever to recommend appropriate APIs for each instruction, negating the need for manual API selection.

  • 18 authors
·
Jul 31, 2023 5

ToolkenGPT: Augmenting Frozen Language Models with Massive Tools via Tool Embeddings

Augmenting large language models (LLMs) with external tools has emerged as a promising approach to solving complex problems. However, traditional methods, which finetune LLMs with tool demonstration data, can be both costly and restricted to a predefined set of tools. Recent in-context learning paradigm alleviates these issues, but the limited context length only allows for a few shots of demonstrations, leading to suboptimal understandings of the tools. Moreover, when there are numerous tools to choose from, in-context learning could completely fail to work. In this paper, we propose an alternative approach, ToolkenGPT, which combines the benefits of both sides. Our approach represents each tool as a token (toolken) and learns an embedding for it, enabling tool calls in the same way as generating a regular word token. Once a toolken is triggered, the LLM is prompted to complete arguments for the tool to execute. ToolkenGPT offers the flexibility to plug in an arbitrary number of tools by expanding the set of toolkens on the fly. In addition, it improves tool use by allowing extensive demonstration data for learning the toolken embeddings. In diverse domains, including numerical reasoning, knowledge-based question answering, and embodied plan generation, our approach effectively augments LLMs with tools and substantially outperforms various latest baselines. ToolkenGPT demonstrates the promising ability to use relevant tools from a large tool set in complex scenarios.

  • 4 authors
·
May 19, 2023 2

PORTool: Tool-Use LLM Training with Rewarded Tree

Current tool-use large language models (LLMs) are trained on static datasets, enabling them to interact with external tools and perform multi-step, tool-integrated reasoning, which produces tool-call trajectories. However, these models imitate how a query is resolved in a generic tool-call routine, thereby failing to explore possible solutions and demonstrating limited performance in an evolved, dynamic tool-call environment. In this work, we propose PORTool, a reinforcement learning (RL) method that encourages a tool-use LLM to explore various trajectories yielding the correct answer. Specifically, this method starts with generating multiple rollouts for a given query, and some of them share the first few tool-call steps, thereby forming a tree-like structure. Next, we assign rewards to each step, based on its ability to produce a correct answer and make successful tool calls. A shared step across different trajectories receives the same reward, while different steps under the same fork receive different rewards. Finally, these step-wise rewards are used to calculate fork-relative advantages, blended with trajectory-relative advantages, to train the LLM for tool use. The experiments utilize 17 tools to address user queries, covering both time-sensitive and time-invariant topics. We conduct ablation studies to systematically justify the necessity and the design robustness of step-wise rewards. Furthermore, we compare the proposed PORTool with other training approaches and demonstrate significant improvements in final accuracy and the number of tool-call steps.

apple Apple
·
Oct 29, 2025 1

PhysToolBench: Benchmarking Physical Tool Understanding for MLLMs

The ability to use, understand, and create tools is a hallmark of human intelligence, enabling sophisticated interaction with the physical world. For any general-purpose intelligent agent to achieve true versatility, it must also master these fundamental skills. While modern Multimodal Large Language Models (MLLMs) leverage their extensive common knowledge for high-level planning in embodied AI and in downstream Vision-Language-Action (VLA) models, the extent of their true understanding of physical tools remains unquantified. To bridge this gap, we present PhysToolBench, the first benchmark dedicated to evaluating the comprehension of physical tools by MLLMs. Our benchmark is structured as a Visual Question Answering (VQA) dataset comprising over 1,000 image-text pairs. It assesses capabilities across three distinct difficulty levels: (1) Tool Recognition: Requiring the recognition of a tool's primary function. (2) Tool Understanding: Testing the ability to grasp the underlying principles of a tool's operation. (3) Tool Creation: Challenging the model to fashion a new tool from surrounding objects when conventional options are unavailable. Our comprehensive evaluation of 32 MLLMs-spanning proprietary, open-source, specialized embodied, and backbones in VLAs-reveals a significant deficiency in tool understanding. Furthermore, we provide an in-depth analysis and propose preliminary solutions. Code and dataset are publicly available.

  • 9 authors
·
Oct 10, 2025 2

ToolACE-R: Tool Learning with Adaptive Self-Refinement

Tool learning, which allows Large Language Models (LLMs) to leverage external tools for solving complex user tasks, has emerged as a promising avenue for extending model capabilities. However, current approaches primarily focus on data synthesis for fine-tuning LLMs to invoke tools effectively, largely ignoring how to fully stimulate the potential of the model. In this paper, we propose ToolACE-R, a novel method that introduces adaptive self-refinement for tool invocations. Our approach features a model-aware iterative training procedure that progressively incorporates more training samples based on the model's evolving capabilities. Additionally, it allows LLMs to iteratively refine their tool calls, optimizing performance without requiring external feedback. To further enhance computational efficiency, we integrate an adaptive mechanism when scaling the inference time, enabling the model to autonomously determine when to stop the refinement process. We conduct extensive experiments across several benchmark datasets, showing that ToolACE-R achieves competitive performance compared to advanced API-based models, even without any refinement. Furthermore, its performance can be further improved efficiently through adaptive self-refinement. Our results demonstrate the effectiveness of the proposed method, which is compatible with base models of various sizes, offering a promising direction for more efficient tool learning.

  • 11 authors
·
Apr 2, 2025

Tool Documentation Enables Zero-Shot Tool-Usage with Large Language Models

Today, large language models (LLMs) are taught to use new tools by providing a few demonstrations of the tool's usage. Unfortunately, demonstrations are hard to acquire, and can result in undesirable biased usage if the wrong demonstration is chosen. Even in the rare scenario that demonstrations are readily available, there is no principled selection protocol to determine how many and which ones to provide. As tasks grow more complex, the selection search grows combinatorially and invariably becomes intractable. Our work provides an alternative to demonstrations: tool documentation. We advocate the use of tool documentation, descriptions for the individual tool usage, over demonstrations. We substantiate our claim through three main empirical findings on 6 tasks across both vision and language modalities. First, on existing benchmarks, zero-shot prompts with only tool documentation are sufficient for eliciting proper tool usage, achieving performance on par with few-shot prompts. Second, on a newly collected realistic tool-use dataset with hundreds of available tool APIs, we show that tool documentation is significantly more valuable than demonstrations, with zero-shot documentation significantly outperforming few-shot without documentation. Third, we highlight the benefits of tool documentations by tackling image generation and video tracking using just-released unseen state-of-the-art models as tools. Finally, we highlight the possibility of using tool documentation to automatically enable new applications: by using nothing more than the documentation of GroundingDino, Stable Diffusion, XMem, and SAM, LLMs can re-invent the functionalities of the just-released Grounded-SAM and Track Anything models.

  • 8 authors
·
Aug 1, 2023 1

LLMs in the Imaginarium: Tool Learning through Simulated Trial and Error

Tools are essential for large language models (LLMs) to acquire up-to-date information and take consequential actions in external environments. Existing work on tool-augmented LLMs primarily focuses on the broad coverage of tools and the flexibility of adding new tools. However, a critical aspect that has surprisingly been understudied is simply how accurately an LLM uses tools for which it has been trained. We find that existing LLMs, including GPT-4 and open-source LLMs specifically fine-tuned for tool use, only reach a correctness rate in the range of 30% to 60%, far from reliable use in practice. We propose a biologically inspired method for tool-augmented LLMs, simulated trial and error (STE), that orchestrates three key mechanisms for successful tool use behaviors in the biological system: trial and error, imagination, and memory. Specifically, STE leverages an LLM's 'imagination' to simulate plausible scenarios for using a tool, after which the LLM interacts with the tool to learn from its execution feedback. Both short-term and long-term memory are employed to improve the depth and breadth of the exploration, respectively. Comprehensive experiments on ToolBench show that STE substantially improves tool learning for LLMs under both in-context learning and fine-tuning settings, bringing a boost of 46.7% to Mistral-Instruct-7B and enabling it to outperform GPT-4. We also show effective continual learning of tools via a simple experience replay strategy.

  • 5 authors
·
Mar 7, 2024 1

MetaTool Benchmark for Large Language Models: Deciding Whether to Use Tools and Which to Use

Large language models (LLMs) have garnered significant attention due to their impressive natural language processing (NLP) capabilities. Recently, many studies have focused on the tool utilization ability of LLMs. They primarily investigated how LLMs effectively collaborate with given specific tools. However, in scenarios where LLMs serve as intelligent agents, as seen in applications like AutoGPT and MetaGPT, LLMs are expected to engage in intricate decision-making processes that involve deciding whether to employ a tool and selecting the most suitable tool(s) from a collection of available tools to fulfill user requests. Therefore, in this paper, we introduce MetaTool, a benchmark designed to evaluate whether LLMs have tool usage awareness and can correctly choose tools. Specifically, we create a dataset called ToolE within the benchmark. This dataset contains various types of user queries in the form of prompts that trigger LLMs to use tools, including both single-tool and multi-tool scenarios. Subsequently, we set the tasks for both tool usage awareness and tool selection. We define four subtasks from different perspectives in tool selection, including tool selection with similar choices, tool selection in specific scenarios, tool selection with possible reliability issues, and multi-tool selection. We conduct experiments involving nine popular LLMs and find that the majority of them still struggle to effectively select tools, highlighting the existing gaps between LLMs and genuine intelligent agents. However, through the error analysis, we found there is still significant room for improvement. Finally, we conclude with insights for tool developers that follow ChatGPT to provide detailed descriptions that can enhance the tool selection performance of LLMs.

  • 11 authors
·
Oct 4, 2023

Large Language Models as Tool Makers

Recent research shows the potential of enhancing the problem-solving ability of large language models (LLMs) through the use of external tools. However, prior work along this line depends on the availability of existing tools. In this work, we take an initial step towards removing this dependency by proposing a closed-loop framework, referred to as LLMs As Tool Makers (LATM), where LLMs create their own reusable tools for problem-solving. Our approach consists of two key phases: 1) tool making: an LLM acts as the tool maker that crafts tools for given tasks, where a tool is implemented as a Python utility function. 2) tool using: an LLM acts as the tool user, which applies the tool built by the tool maker for problem-solving. The tool user can be either the same or a different LLM from the tool maker. Tool-making enables an LLM to continually generate tools that can be applied to different requests so that future requests can call the corresponding APIs when beneficial for solving the tasks. Furthermore, the division of labor among LLMs for tool-making and tool-using phases introduces the opportunity to achieve cost effectiveness without degrading the quality of generated tools and problem solutions. For example, recognizing that tool-making demands more sophisticated capabilities than tool-using, we can apply a powerful yet resource-intensive model as the tool maker, and a lightweight while cost-effective model as the tool user. We validate the effectiveness of our approach across a variety of complex reasoning tasks, including Big-Bench tasks. With GPT-4 as the tool maker and GPT-3.5 as the tool user, LATM can achieve performance that is on par with using GPT-4 for both tool making and tool using, while the inference cost is significantly reduced.

  • 5 authors
·
May 26, 2023 1