Update app.py
Browse files
app.py
CHANGED
|
@@ -4,37 +4,67 @@ import random
|
|
| 4 |
import spaces
|
| 5 |
import torch
|
| 6 |
from diffusers import DiffusionPipeline
|
|
|
|
| 7 |
|
| 8 |
dtype = torch.bfloat16
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
MAX_SEED = np.iinfo(np.int32).max
|
| 14 |
MAX_IMAGE_SIZE = 2048
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
@spaces.GPU()
|
| 17 |
-
def infer(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
if randomize_seed:
|
| 19 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
| 20 |
generator = torch.Generator().manual_seed(seed)
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
| 27 |
guidance_scale=0.0
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
| 31 |
examples = [
|
| 32 |
"a tiny astronaut hatching from an egg on the moon",
|
| 33 |
"a cat holding a sign that says hello world",
|
| 34 |
"an anime illustration of a wiener schnitzel",
|
| 35 |
]
|
| 36 |
|
| 37 |
-
css="""
|
| 38 |
#col-container {
|
| 39 |
margin: 0 auto;
|
| 40 |
max-width: 520px;
|
|
@@ -42,13 +72,18 @@ css="""
|
|
| 42 |
"""
|
| 43 |
|
| 44 |
with gr.Blocks(css=css) as demo:
|
| 45 |
-
|
| 46 |
with gr.Column(elem_id="col-container"):
|
| 47 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
""")
|
| 49 |
|
| 50 |
with gr.Row():
|
| 51 |
-
|
| 52 |
prompt = gr.Text(
|
| 53 |
label="Prompt",
|
| 54 |
show_label=False,
|
|
@@ -56,13 +91,11 @@ with gr.Blocks(css=css) as demo:
|
|
| 56 |
placeholder="Enter your prompt",
|
| 57 |
container=False,
|
| 58 |
)
|
| 59 |
-
|
| 60 |
run_button = gr.Button("Run", scale=0)
|
| 61 |
|
| 62 |
result = gr.Image(label="Result", show_label=False)
|
| 63 |
|
| 64 |
with gr.Accordion("Advanced Settings", open=False):
|
| 65 |
-
|
| 66 |
seed = gr.Slider(
|
| 67 |
label="Seed",
|
| 68 |
minimum=0,
|
|
@@ -70,11 +103,9 @@ with gr.Blocks(css=css) as demo:
|
|
| 70 |
step=1,
|
| 71 |
value=0,
|
| 72 |
)
|
| 73 |
-
|
| 74 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 75 |
|
| 76 |
with gr.Row():
|
| 77 |
-
|
| 78 |
width = gr.Slider(
|
| 79 |
label="Width",
|
| 80 |
minimum=256,
|
|
@@ -82,7 +113,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 82 |
step=32,
|
| 83 |
value=1024,
|
| 84 |
)
|
| 85 |
-
|
| 86 |
height = gr.Slider(
|
| 87 |
label="Height",
|
| 88 |
minimum=256,
|
|
@@ -92,8 +122,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 92 |
)
|
| 93 |
|
| 94 |
with gr.Row():
|
| 95 |
-
|
| 96 |
-
|
| 97 |
num_inference_steps = gr.Slider(
|
| 98 |
label="Number of inference steps",
|
| 99 |
minimum=1,
|
|
@@ -103,18 +131,25 @@ with gr.Blocks(css=css) as demo:
|
|
| 103 |
)
|
| 104 |
|
| 105 |
gr.Examples(
|
| 106 |
-
examples
|
| 107 |
-
fn
|
| 108 |
-
inputs
|
| 109 |
-
outputs
|
| 110 |
cache_examples="lazy"
|
| 111 |
)
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
demo.launch()
|
|
|
|
| 4 |
import spaces
|
| 5 |
import torch
|
| 6 |
from diffusers import DiffusionPipeline
|
| 7 |
+
from transformers import CLIPTokenizer
|
| 8 |
|
| 9 |
dtype = torch.bfloat16
|
| 10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
|
| 12 |
+
# Initialize CLIP tokenizer for prompt length checking
|
| 13 |
+
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
| 14 |
+
|
| 15 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 16 |
+
"UnfilteredAI/NSFW-Flux-v1",
|
| 17 |
+
torch_dtype=dtype
|
| 18 |
+
).to(device)
|
| 19 |
|
| 20 |
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
MAX_IMAGE_SIZE = 2048
|
| 22 |
+
MAX_TOKENS = 77 # CLIP's maximum token length
|
| 23 |
+
|
| 24 |
+
def truncate_prompt(prompt):
|
| 25 |
+
"""Truncate the prompt to fit within CLIP's token limit"""
|
| 26 |
+
tokens = tokenizer.encode(prompt, truncation=True, max_length=MAX_TOKENS)
|
| 27 |
+
return tokenizer.decode(tokens)
|
| 28 |
|
| 29 |
@spaces.GPU()
|
| 30 |
+
def infer(
|
| 31 |
+
prompt,
|
| 32 |
+
seed=42,
|
| 33 |
+
randomize_seed=False,
|
| 34 |
+
width=1024,
|
| 35 |
+
height=1024,
|
| 36 |
+
num_inference_steps=4,
|
| 37 |
+
progress=gr.Progress(track_tqdm=True)
|
| 38 |
+
):
|
| 39 |
+
# Truncate prompt if necessary
|
| 40 |
+
truncated_prompt = truncate_prompt(prompt)
|
| 41 |
+
|
| 42 |
if randomize_seed:
|
| 43 |
seed = random.randint(0, MAX_SEED)
|
| 44 |
+
|
| 45 |
generator = torch.Generator().manual_seed(seed)
|
| 46 |
+
|
| 47 |
+
try:
|
| 48 |
+
image = pipe(
|
| 49 |
+
prompt=truncated_prompt,
|
| 50 |
+
width=width,
|
| 51 |
+
height=height,
|
| 52 |
+
num_inference_steps=num_inference_steps,
|
| 53 |
+
generator=generator,
|
| 54 |
guidance_scale=0.0
|
| 55 |
+
).images[0]
|
| 56 |
+
|
| 57 |
+
return image, seed
|
| 58 |
+
except Exception as e:
|
| 59 |
+
raise gr.Error(f"Error generating image: {str(e)}")
|
| 60 |
+
|
| 61 |
examples = [
|
| 62 |
"a tiny astronaut hatching from an egg on the moon",
|
| 63 |
"a cat holding a sign that says hello world",
|
| 64 |
"an anime illustration of a wiener schnitzel",
|
| 65 |
]
|
| 66 |
|
| 67 |
+
css = """
|
| 68 |
#col-container {
|
| 69 |
margin: 0 auto;
|
| 70 |
max-width: 520px;
|
|
|
|
| 72 |
"""
|
| 73 |
|
| 74 |
with gr.Blocks(css=css) as demo:
|
|
|
|
| 75 |
with gr.Column(elem_id="col-container"):
|
| 76 |
+
gr.Markdown("""
|
| 77 |
+
NSFW-Flux-v1 is a 12 billion parameter rectified flow transformer
|
| 78 |
+
capable of generating images from text descriptions.
|
| 79 |
+
Finetuned by UnfilteredAI, this model is designed to produce
|
| 80 |
+
a wide range of images, including explicit and NSFW
|
| 81 |
+
(Not Safe For Work) images from textual inputs.
|
| 82 |
+
|
| 83 |
+
Note: Long prompts will be automatically truncated to fit the model's requirements.
|
| 84 |
""")
|
| 85 |
|
| 86 |
with gr.Row():
|
|
|
|
| 87 |
prompt = gr.Text(
|
| 88 |
label="Prompt",
|
| 89 |
show_label=False,
|
|
|
|
| 91 |
placeholder="Enter your prompt",
|
| 92 |
container=False,
|
| 93 |
)
|
|
|
|
| 94 |
run_button = gr.Button("Run", scale=0)
|
| 95 |
|
| 96 |
result = gr.Image(label="Result", show_label=False)
|
| 97 |
|
| 98 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
| 99 |
seed = gr.Slider(
|
| 100 |
label="Seed",
|
| 101 |
minimum=0,
|
|
|
|
| 103 |
step=1,
|
| 104 |
value=0,
|
| 105 |
)
|
|
|
|
| 106 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 107 |
|
| 108 |
with gr.Row():
|
|
|
|
| 109 |
width = gr.Slider(
|
| 110 |
label="Width",
|
| 111 |
minimum=256,
|
|
|
|
| 113 |
step=32,
|
| 114 |
value=1024,
|
| 115 |
)
|
|
|
|
| 116 |
height = gr.Slider(
|
| 117 |
label="Height",
|
| 118 |
minimum=256,
|
|
|
|
| 122 |
)
|
| 123 |
|
| 124 |
with gr.Row():
|
|
|
|
|
|
|
| 125 |
num_inference_steps = gr.Slider(
|
| 126 |
label="Number of inference steps",
|
| 127 |
minimum=1,
|
|
|
|
| 131 |
)
|
| 132 |
|
| 133 |
gr.Examples(
|
| 134 |
+
examples=examples,
|
| 135 |
+
fn=infer,
|
| 136 |
+
inputs=[prompt],
|
| 137 |
+
outputs=[result, seed],
|
| 138 |
cache_examples="lazy"
|
| 139 |
)
|
| 140 |
+
|
| 141 |
+
gr.on(
|
| 142 |
+
triggers=[run_button.click, prompt.submit],
|
| 143 |
+
fn=infer,
|
| 144 |
+
inputs=[
|
| 145 |
+
prompt,
|
| 146 |
+
seed,
|
| 147 |
+
randomize_seed,
|
| 148 |
+
width,
|
| 149 |
+
height,
|
| 150 |
+
num_inference_steps
|
| 151 |
+
],
|
| 152 |
+
outputs=[result, seed]
|
| 153 |
+
)
|
| 154 |
|
| 155 |
demo.launch()
|