local-inference / server.py
ButterM40's picture
Optimize build: lazy model loading + CPU torch wheel
b9ed0c9
raw
history blame
11.3 kB
from fastapi import FastAPI, UploadFile, File
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
from pydantic import BaseModel
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
AutoModelForVision2Seq,
AutoProcessor
)
import torch, uvicorn, os, subprocess, threading, shutil, time
from typing import List
import numpy as np
from PIL import Image
import io
# =====================================================
# FastAPI App Setup
# =====================================================
app = FastAPI(title="AI Chat + Summarization + Vision API")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# =====================================================
# Auto Disk Cleanup (for Codespaces)
# =====================================================
def check_disk_space(min_gb=2):
stat = shutil.disk_usage("/")
free_gb = stat.free / (1024 ** 3)
if free_gb < min_gb:
print(f"⚠️ Low disk space ({free_gb:.2f} GB). Clearing HuggingFace cache...")
os.system("rm -rf ~/.cache/huggingface/*")
def background_health_monitor():
while True:
check_disk_space()
time.sleep(600)
threading.Thread(target=background_health_monitor, daemon=True).start()
# =====================================================
# Model Loading (Lazy Initialization)
# =====================================================
chat_model_name = "Qwen/Qwen1.5-0.5B-Chat"
chat_tokenizer = None
chat_model = None
summary_pipe = None
vision_model = None
vision_processor = None
def load_chat_model():
global chat_tokenizer, chat_model
if chat_tokenizer is None or chat_model is None:
print("Loading chat model...")
chat_tokenizer = AutoTokenizer.from_pretrained(chat_model_name)
chat_model = AutoModelForCausalLM.from_pretrained(
chat_model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
low_cpu_mem_usage=True,
offload_folder="offload",
).eval()
def load_summary_model():
global summary_pipe
if summary_pipe is None:
print("Loading summarization model...")
summary_pipe = pipeline(
"summarization",
model="sshleifer/distilbart-cnn-6-6",
device=0 if torch.cuda.is_available() else -1
)
def load_vision_model():
global vision_model, vision_processor
if vision_model is None or vision_processor is None:
print("Loading vision model...")
vision_model_name = "microsoft/git-base-coco"
vision_model = AutoModelForVision2Seq.from_pretrained(vision_model_name).to("cuda" if torch.cuda.is_available() else "cpu")
vision_processor = AutoProcessor.from_pretrained(vision_model_name)
# =====================================================
# API Schemas
# =====================================================
class ChatRequest(BaseModel):
message: str
max_new_tokens: int = 80
temperature: float = 0.7
class SummaryRequest(BaseModel):
text: str
max_length: int = 100
min_length: int = 25
class WordPredictionRequest(BaseModel):
word: str
num_predictions: int = 5
# =====================================================
# Chat Endpoint
# =====================================================
@app.post("/api/chat")
def chat_generate(req: ChatRequest):
try:
# Load models on first request
load_chat_model()
# Build prompt and run generation while requesting per-step scores
prompt = (
"<|im_start|>system\nYou are a helpful AI assistant.<|im_end|>\n"
f"<|im_start|>user\n{req.message}<|im_end|>\n"
"<|im_start|>assistant\n"
)
inputs = chat_tokenizer(prompt, return_tensors="pt").to(chat_model.device)
# Generate deterministically (greedy) while returning scores for each generated step
outputs = chat_model.generate(
**inputs,
max_new_tokens=req.max_new_tokens,
temperature=req.temperature,
do_sample=False,
output_scores=True,
return_dict_in_generate=True,
eos_token_id=chat_tokenizer.eos_token_id,
pad_token_id=chat_tokenizer.eos_token_id,
)
# Full sequence and newly generated token ids
sequence = outputs.sequences[0]
start_idx = inputs["input_ids"].size(1)
generated_ids = sequence[start_idx:].tolist()
# Decode the full reply
reply = chat_tokenizer.decode(generated_ids, skip_special_tokens=True).strip()
# Prepare per-token alternatives using the per-step logits/scores
tokens_info = []
# outputs.scores is a tuple with one entry per generated step
if hasattr(outputs, "scores") and outputs.scores is not None:
for i, logits in enumerate(outputs.scores):
# logits shape: (batch_size, vocab_size)
probs = torch.softmax(logits[0], dim=-1)
chosen_id = generated_ids[i]
# Get top-k (we ask for 6 and drop the chosen token if present)
topk = torch.topk(probs, k=6)
alts = []
for idx, val in zip(topk.indices.tolist(), topk.values.tolist()):
if idx == chosen_id:
continue
alts.append({
"id": idx,
"token": chat_tokenizer.decode([idx], skip_special_tokens=True).strip(),
"probability": float(val)
})
if len(alts) >= 5:
break
# Fallback: if not enough alts, sample additional highest-prob tokens
if len(alts) < 5:
# get full topk of vocab (expensive but rare for short max_new_tokens)
fallback_topk = torch.topk(probs, k=10)
for idx, val in zip(fallback_topk.indices.tolist(), fallback_topk.values.tolist()):
if idx == chosen_id:
continue
if any(a["id"] == idx for a in alts):
continue
alts.append({
"id": idx,
"token": chat_tokenizer.decode([idx], skip_special_tokens=True).strip(),
"probability": float(val)
})
if len(alts) >= 5:
break
tokens_info.append({
"id": chosen_id,
"token": chat_tokenizer.decode([chosen_id], skip_special_tokens=True).strip(),
"alternatives": alts
})
return {"success": True, "response": reply, "tokens": tokens_info}
except Exception as e:
return {"success": False, "error": str(e)}
# =====================================================
# Word Prediction Endpoint
# =====================================================
@app.post("/predict_words")
def predict_words(req: WordPredictionRequest):
try:
# Load models on first request
load_chat_model()
input_ids = chat_tokenizer.encode(req.word, return_tensors="pt")
with torch.no_grad():
outputs = chat_model(input_ids)
predictions = outputs.logits[0, -1, :]
top_k = torch.topk(predictions, k=req.num_predictions)
words = []
for i in range(req.num_predictions):
token = top_k.indices[i].item()
prob = float(torch.softmax(top_k.values, dim=0)[i].item())
predicted_word = chat_tokenizer.decode([token])
words.append({"word": predicted_word, "probability": prob})
return words
except Exception as e:
return {"success": False, "error": str(e)}
# =====================================================
# Summarization Endpoint
# =====================================================
@app.post("/api/summarize")
def summarize_text(req: SummaryRequest):
try:
# Load models on first request
load_summary_model()
# Get word count
word_count = len(req.text.split())
# Adjust max_length to be ~30-50% of input length
adjusted_max = min(req.max_length, max(20, word_count // 2))
# Adjust min_length to be ~10-20% of input length
adjusted_min = min(req.min_length, max(10, word_count // 5))
result = summary_pipe(
req.text,
max_length=adjusted_max,
min_length=min(adjusted_min, adjusted_max // 2),
truncation=True,
)
key = "summary_text" if "summary_text" in result[0] else "generated_text"
return {"success": True, "summary": result[0][key].strip()}
except Exception as e:
return {"success": False, "error": str(e)}
# =====================================================
# Image Processing Endpoint
# =====================================================
@app.post("/process_image")
async def process_image(image: UploadFile = File(...)):
try:
# Load models on first request
load_vision_model()
contents = await image.read()
img = Image.open(io.BytesIO(contents)).convert('RGB')
# Process image with vision model
inputs = vision_processor(images=img, return_tensors="pt")
inputs = {k: v.to(vision_model.device) for k, v in inputs.items()}
# Generate description
with torch.no_grad():
outputs = vision_model.generate(
**inputs,
max_length=50,
num_beams=5,
temperature=0.8,
do_sample=True
)
description = vision_processor.batch_decode(outputs, skip_special_tokens=True)[0]
return {
"success": True,
"description": description
}
except Exception as e:
print(f"Error processing image: {str(e)}")
return {"success": False, "error": str(e)}
# =====================================================
# Health + Static
# =====================================================
@app.get("/api/health")
def health_check():
return {
"status": "healthy",
"models": [
"Qwen-1.5-0.5B-Chat",
"DistilBART-6-6",
"microsoft/git-base-coco"
]
}
if os.path.exists("static"):
app.mount("/static", StaticFiles(directory="static"), name="static")
@app.get("/")
def read_root():
if os.path.exists("static/index.html"):
return FileResponse("static/index.html")
return {"message": "AI Chat & Summarization API running!"}
# =====================================================
# Run API
# =====================================================
if __name__ == "__main__":
port = int(os.getenv("PORT", 8000))
uvicorn.run(app, host="0.0.0.0", port=port)