Spaces:
Sleeping
Sleeping
Diego Adame
commited on
Commit
·
84fc33b
1
Parent(s):
2062bc6
Final_Working
Browse files
server.py
CHANGED
|
@@ -11,7 +11,6 @@ import torch, uvicorn, os, subprocess, threading, shutil, time
|
|
| 11 |
# =====================================================
|
| 12 |
app = FastAPI(title="AI Chat + Summarization API")
|
| 13 |
|
| 14 |
-
# Allow frontend requests
|
| 15 |
app.add_middleware(
|
| 16 |
CORSMiddleware,
|
| 17 |
allow_origins=["*"],
|
|
@@ -21,35 +20,34 @@ app.add_middleware(
|
|
| 21 |
)
|
| 22 |
|
| 23 |
# =====================================================
|
| 24 |
-
#
|
| 25 |
# =====================================================
|
| 26 |
def check_disk_space(min_gb=2):
|
| 27 |
stat = shutil.disk_usage("/")
|
| 28 |
free_gb = stat.free / (1024 ** 3)
|
| 29 |
if free_gb < min_gb:
|
| 30 |
-
print(f"⚠️ Low disk space ({free_gb:.2f} GB). Clearing
|
| 31 |
os.system("rm -rf ~/.cache/huggingface/*")
|
| 32 |
|
| 33 |
def background_health_monitor():
|
| 34 |
while True:
|
| 35 |
check_disk_space()
|
| 36 |
-
time.sleep(600)
|
| 37 |
|
| 38 |
threading.Thread(target=background_health_monitor, daemon=True).start()
|
| 39 |
|
| 40 |
# =====================================================
|
| 41 |
-
# Load Chat Model (
|
| 42 |
# =====================================================
|
| 43 |
-
print("Loading
|
| 44 |
-
chat_model_name = "Qwen/Qwen1.5-0.
|
| 45 |
chat_tokenizer = AutoTokenizer.from_pretrained(chat_model_name)
|
| 46 |
chat_model = AutoModelForCausalLM.from_pretrained(
|
| 47 |
chat_model_name,
|
| 48 |
torch_dtype=torch.bfloat16,
|
| 49 |
-
|
| 50 |
).eval()
|
| 51 |
|
| 52 |
-
|
| 53 |
# =====================================================
|
| 54 |
# Load Summarization Model
|
| 55 |
# =====================================================
|
|
@@ -61,7 +59,7 @@ summary_pipe = pipeline(
|
|
| 61 |
)
|
| 62 |
|
| 63 |
# =====================================================
|
| 64 |
-
#
|
| 65 |
# =====================================================
|
| 66 |
class ChatRequest(BaseModel):
|
| 67 |
message: str
|
|
@@ -74,19 +72,16 @@ class SummaryRequest(BaseModel):
|
|
| 74 |
min_length: int = 25
|
| 75 |
|
| 76 |
# =====================================================
|
| 77 |
-
# Chat Endpoint
|
| 78 |
# =====================================================
|
| 79 |
@app.post("/api/chat")
|
| 80 |
def chat_generate(req: ChatRequest):
|
| 81 |
try:
|
| 82 |
-
# Proper message template for Qwen 1.5 Chat
|
| 83 |
prompt = (
|
| 84 |
"<|im_start|>system\nYou are a helpful AI assistant.<|im_end|>\n"
|
| 85 |
f"<|im_start|>user\n{req.message}<|im_end|>\n"
|
| 86 |
"<|im_start|>assistant\n"
|
| 87 |
)
|
| 88 |
-
|
| 89 |
-
# Tokenize and run inference
|
| 90 |
inputs = chat_tokenizer(prompt, return_tensors="pt").to(chat_model.device)
|
| 91 |
outputs = chat_model.generate(
|
| 92 |
**inputs,
|
|
@@ -97,17 +92,11 @@ def chat_generate(req: ChatRequest):
|
|
| 97 |
eos_token_id=chat_tokenizer.eos_token_id,
|
| 98 |
pad_token_id=chat_tokenizer.eos_token_id,
|
| 99 |
)
|
| 100 |
-
|
| 101 |
-
# Decode only newly generated tokens
|
| 102 |
new_tokens = outputs[0][inputs["input_ids"].size(1):]
|
| 103 |
reply = chat_tokenizer.decode(new_tokens, skip_special_tokens=True).strip()
|
| 104 |
-
|
| 105 |
-
# Fallback in case of empty output
|
| 106 |
if not reply:
|
| 107 |
reply = chat_tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
| 108 |
-
|
| 109 |
return {"success": True, "response": reply}
|
| 110 |
-
|
| 111 |
except Exception as e:
|
| 112 |
return {"success": False, "error": str(e)}
|
| 113 |
|
|
@@ -129,11 +118,11 @@ def summarize_text(req: SummaryRequest):
|
|
| 129 |
return {"success": False, "error": str(e)}
|
| 130 |
|
| 131 |
# =====================================================
|
| 132 |
-
# Health + Static
|
| 133 |
# =====================================================
|
| 134 |
@app.get("/api/health")
|
| 135 |
def health_check():
|
| 136 |
-
return {"status": "healthy", "models": ["
|
| 137 |
|
| 138 |
if os.path.exists("static"):
|
| 139 |
app.mount("/static", StaticFiles(directory="static"), name="static")
|
|
@@ -145,11 +134,17 @@ def read_root():
|
|
| 145 |
return {"message": "AI Chat & Summarization API running!"}
|
| 146 |
|
| 147 |
# =====================================================
|
| 148 |
-
# Run
|
| 149 |
# =====================================================
|
| 150 |
if __name__ == "__main__":
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
# =====================================================
|
| 12 |
app = FastAPI(title="AI Chat + Summarization API")
|
| 13 |
|
|
|
|
| 14 |
app.add_middleware(
|
| 15 |
CORSMiddleware,
|
| 16 |
allow_origins=["*"],
|
|
|
|
| 20 |
)
|
| 21 |
|
| 22 |
# =====================================================
|
| 23 |
+
# Auto Disk Cleanup (for Codespaces)
|
| 24 |
# =====================================================
|
| 25 |
def check_disk_space(min_gb=2):
|
| 26 |
stat = shutil.disk_usage("/")
|
| 27 |
free_gb = stat.free / (1024 ** 3)
|
| 28 |
if free_gb < min_gb:
|
| 29 |
+
print(f"⚠️ Low disk space ({free_gb:.2f} GB). Clearing HuggingFace cache...")
|
| 30 |
os.system("rm -rf ~/.cache/huggingface/*")
|
| 31 |
|
| 32 |
def background_health_monitor():
|
| 33 |
while True:
|
| 34 |
check_disk_space()
|
| 35 |
+
time.sleep(600)
|
| 36 |
|
| 37 |
threading.Thread(target=background_health_monitor, daemon=True).start()
|
| 38 |
|
| 39 |
# =====================================================
|
| 40 |
+
# Load Chat Model (Qwen 1.5-0.5B-Chat)
|
| 41 |
# =====================================================
|
| 42 |
+
print("Loading Qwen 1.5-0.5B-Chat...")
|
| 43 |
+
chat_model_name = "Qwen/Qwen1.5-0.5B-Chat"
|
| 44 |
chat_tokenizer = AutoTokenizer.from_pretrained(chat_model_name)
|
| 45 |
chat_model = AutoModelForCausalLM.from_pretrained(
|
| 46 |
chat_model_name,
|
| 47 |
torch_dtype=torch.bfloat16,
|
| 48 |
+
device_map="auto",
|
| 49 |
).eval()
|
| 50 |
|
|
|
|
| 51 |
# =====================================================
|
| 52 |
# Load Summarization Model
|
| 53 |
# =====================================================
|
|
|
|
| 59 |
)
|
| 60 |
|
| 61 |
# =====================================================
|
| 62 |
+
# API Schemas
|
| 63 |
# =====================================================
|
| 64 |
class ChatRequest(BaseModel):
|
| 65 |
message: str
|
|
|
|
| 72 |
min_length: int = 25
|
| 73 |
|
| 74 |
# =====================================================
|
| 75 |
+
# Chat Endpoint
|
| 76 |
# =====================================================
|
| 77 |
@app.post("/api/chat")
|
| 78 |
def chat_generate(req: ChatRequest):
|
| 79 |
try:
|
|
|
|
| 80 |
prompt = (
|
| 81 |
"<|im_start|>system\nYou are a helpful AI assistant.<|im_end|>\n"
|
| 82 |
f"<|im_start|>user\n{req.message}<|im_end|>\n"
|
| 83 |
"<|im_start|>assistant\n"
|
| 84 |
)
|
|
|
|
|
|
|
| 85 |
inputs = chat_tokenizer(prompt, return_tensors="pt").to(chat_model.device)
|
| 86 |
outputs = chat_model.generate(
|
| 87 |
**inputs,
|
|
|
|
| 92 |
eos_token_id=chat_tokenizer.eos_token_id,
|
| 93 |
pad_token_id=chat_tokenizer.eos_token_id,
|
| 94 |
)
|
|
|
|
|
|
|
| 95 |
new_tokens = outputs[0][inputs["input_ids"].size(1):]
|
| 96 |
reply = chat_tokenizer.decode(new_tokens, skip_special_tokens=True).strip()
|
|
|
|
|
|
|
| 97 |
if not reply:
|
| 98 |
reply = chat_tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
|
|
|
| 99 |
return {"success": True, "response": reply}
|
|
|
|
| 100 |
except Exception as e:
|
| 101 |
return {"success": False, "error": str(e)}
|
| 102 |
|
|
|
|
| 118 |
return {"success": False, "error": str(e)}
|
| 119 |
|
| 120 |
# =====================================================
|
| 121 |
+
# Health + Static
|
| 122 |
# =====================================================
|
| 123 |
@app.get("/api/health")
|
| 124 |
def health_check():
|
| 125 |
+
return {"status": "healthy", "models": ["Qwen-1.5-0.5B-Chat", "DistilBART-6-6"]}
|
| 126 |
|
| 127 |
if os.path.exists("static"):
|
| 128 |
app.mount("/static", StaticFiles(directory="static"), name="static")
|
|
|
|
| 134 |
return {"message": "AI Chat & Summarization API running!"}
|
| 135 |
|
| 136 |
# =====================================================
|
| 137 |
+
# Run API + Cloudflare Tunnel
|
| 138 |
# =====================================================
|
| 139 |
if __name__ == "__main__":
|
| 140 |
+
|
| 141 |
+
def run_api():
|
| 142 |
+
print("🚀 Starting FastAPI server on http://0.0.0.0:8000")
|
| 143 |
+
uvicorn.run(app, host="0.0.0.0", port=8000, log_level="info")
|
| 144 |
+
|
| 145 |
+
threading.Thread(target=run_api, daemon=True).start()
|
| 146 |
+
|
| 147 |
+
# Start Cloudflare tunnel
|
| 148 |
+
time.sleep(3)
|
| 149 |
+
print("🌐 Starting Cloudflare Tunnel…")
|
| 150 |
+
subprocess.run(["cloudflared", "tunnel", "--url", "http://localhost:8000"])
|