File size: 1,457 Bytes
0fe9663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM
from config import MODEL_NAME
import torch

# Load model and tokenizer globally for efficiency
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto")

@spaces.GPU(duration=60)
def generate_response(message, history, system_prompt, temperature, max_tokens, top_p):
    # Format conversation history
    conversation = [{"role": "system", "content": system_prompt}]
    
    for user_msg, assistant_msg in history:
        conversation.append({"role": "user", "content": user_msg})
        if assistant_msg:
            conversation.append({"role": "assistant", "content": assistant_msg})
    
    conversation.append({"role": "user", "content": message})
    
    # Format for chat model
    input_text = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
    
    inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
    
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
            do_sample=temperature > 0,
            pad_token_id=tokenizer.eos_token_id
        )
    
    response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
    return response