Spaces:
Paused
Paused
| import gradio as gr | |
| from transformers import pipeline | |
| import librosa | |
| ########################LLama model############################### | |
| # from transformers import AutoModelForCausalLM, AutoTokenizer | |
| # model_name_or_path = "TheBloke/llama2_7b_chat_uncensored-GPTQ" | |
| # # To use a different branch, change revision | |
| # # For example: revision="main" | |
| # model = AutoModelForCausalLM.from_pretrained(model_name_or_path, | |
| # device_map="auto", | |
| # trust_remote_code=True, | |
| # revision="main", | |
| # #quantization_config=QuantizationConfig(disable_exllama=True) | |
| # ) | |
| # tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) | |
| # Llama_pipe = pipeline( | |
| # "text-generation", | |
| # model=model, | |
| # tokenizer=tokenizer, | |
| # max_new_tokens=40, | |
| # do_sample=True, | |
| # temperature=0.7, | |
| # top_p=0.95, | |
| # top_k=40, | |
| # repetition_penalty=1.1 | |
| # ) | |
| # history="""User: Hello, Rally? | |
| # Rally: I'm happy to see you again. What you want to talk to day? | |
| # User: Let's talk about food | |
| # Rally: Sure. | |
| # User: I'm hungry right now. Do you know any Vietnamese food?""" | |
| # prompt_template = f"""<|im_start|>system | |
| # Write one sentence to continue the conversation<|im_end|> | |
| # {history} | |
| # Rally:""" | |
| # print(Llama_pipe(prompt_template)[0]['generated_text']) | |
| # def RallyRespone(chat_history, message): | |
| # chat_history += "User: " + message + "\n" | |
| # t_chat = Llama_pipe(prompt_template)[0]['generated_text'] | |
| # res = t_chat[t_chat.rfind("Rally: "):] | |
| # return res | |
| ########################ASR model############################### | |
| from transformers import Speech2TextForConditionalGeneration, Speech2TextProcessor | |
| model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr").to("cuda") | |
| processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr", do_upper_case=True) | |
| def RallyListen(audio): | |
| features = processor(audio, sampling_rate=16000, padding=True, return_tensors="pt") | |
| input_features = features.input_features.to("cuda") | |
| attention_mask = features.attention_mask.to("cuda") | |
| gen_tokens = model.generate(input_features=input_features, attention_mask=attention_mask) | |
| ret = processor.batch_decode(gen_tokens, skip_special_tokens=True) | |
| return ret | |
| ########################Gradio UI############################### | |
| # Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text. | |
| def add_file(files): | |
| return files.name | |
| def print_like_dislike(x: gr.LikeData): | |
| print(x.index, x.value, x.liked) | |
| def upfile(files): | |
| x = librosa.load(files, sr=16000) | |
| print(x[0]) | |
| text = RallyListen(x[0]) | |
| return [text[0], text[0]] | |
| def transcribe(audio): | |
| sr, y = audio | |
| y = y.astype(np.float32) | |
| y /= np.max(np.abs(y)) | |
| return transcriber({"sampling_rate": sr, "raw": y})["text"], transcriber({"sampling_rate": sr, "raw": y})["text"] | |
| # def recommand(text): | |
| # ret = "answer for" | |
| # return ret + text | |
| def add_text(history, text): | |
| history = history + [(text, None)] | |
| return history, gr.Textbox(value="", interactive=False) | |
| # def bot(history): | |
| # response = "**That's cool!**" | |
| # history[-1][1] = "" | |
| # for character in response: | |
| # history[-1][1] += character | |
| # time.sleep(0.05) | |
| # yield history | |
| with gr.Blocks() as demo: | |
| chatbot = gr.Chatbot( | |
| [], | |
| elem_id="chatbot", | |
| bubble_full_width=False, | |
| ) | |
| file_output = gr.File() | |
| def respond(message, chat_history): | |
| bot_message = RallyRespone(chat_history, message) | |
| chat_history.append((message, bot_message)) | |
| time.sleep(2) | |
| print (chat_history[-1]) | |
| return chat_history[-1][-1], chat_history | |
| with gr.Row(): | |
| with gr.Column(): | |
| audio_speech = gr.Audio(sources=["microphone"]) | |
| submit = gr.Button("Submit") | |
| send = gr.Button("Send") | |
| btn = gr.UploadButton("π", file_types=["audio"]) | |
| with gr.Column(): | |
| opt1 = gr.Button("1: ") | |
| opt2 = gr.Button("2: ") | |
| #submit.click(translate, inputs=audio_speech, outputs=[opt1, opt2]) | |
| # output is opt1 value, opt2 value [ , ] | |
| file_msg = btn.upload(add_file, btn, file_output) | |
| submit.click(upfile, inputs=file_output, outputs=[opt1, opt2]) | |
| send.click(transcribe, inputs=audio_speech, outputs=[opt1, opt2]) | |
| opt1.click(respond, [opt1, chatbot], [opt1, chatbot]) | |
| opt2.click(respond, [opt2, chatbot], [opt2, chatbot]) | |
| #opt2.click(recommand, inputs=opt2) | |
| #click event maybe BOT . generate history = optx.value, | |
| chatbot.like(print_like_dislike, None, None) | |
| if __name__ == "__main__": | |
| demo.queue() | |
| demo.launch(debug=True) |