N-Kibria's picture
Update app.py
5ef8c66 verified
import gradio as gr
import pickle
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import os
from scipy.sparse import csr_matrix
class ItemBasedCF:
def __init__(self, n_neighbors=20):
self.n_neighbors = n_neighbors
self.item_similarity = None
self.user_item_matrix = None
def predict(self, user_idx, movie_idx):
user_ratings = self.user_item_matrix[user_idx].toarray().flatten()
rated_mask = user_ratings > 0
if not rated_mask.any():
return 2.5
similarities = self.item_similarity[movie_idx].toarray().flatten()
weights = similarities * rated_mask
if weights.sum() == 0:
return 2.5
prediction = (weights * user_ratings).sum() / weights.sum()
return np.clip(prediction, 1, 5)
class SVDRecommender:
def __init__(self, n_factors=50):
self.n_factors = n_factors
self.user_factors = None
self.item_factors = None
self.global_mean = 3.5
def predict(self, user_idx, movie_idx):
prediction = self.global_mean + np.dot(self.user_factors[user_idx], self.item_factors[movie_idx])
return np.clip(prediction, 1, 5)
class NeuralCF(nn.Module):
def __init__(self, n_users, n_movies, embedding_dim=50, hidden_layers=[64, 32, 16]):
super(NeuralCF, self).__init__()
self.user_embedding = nn.Embedding(n_users, embedding_dim)
self.movie_embedding = nn.Embedding(n_movies, embedding_dim)
layers = []
input_dim = embedding_dim * 2
for hidden_dim in hidden_layers:
layers.append(nn.Linear(input_dim, hidden_dim))
layers.append(nn.ReLU())
layers.append(nn.Dropout(0.2))
input_dim = hidden_dim
layers.append(nn.Linear(input_dim, 1))
self.mlp = nn.Sequential(*layers)
def forward(self, user_ids, movie_ids):
user_emb = self.user_embedding(user_ids)
movie_emb = self.movie_embedding(movie_ids)
x = torch.cat([user_emb, movie_emb], dim=1)
output = self.mlp(x)
return output.squeeze()
def predict(self, user_idx, movie_idx, device='cpu'):
self.eval()
with torch.no_grad():
user_tensor = torch.LongTensor([user_idx]).to(device)
movie_tensor = torch.LongTensor([movie_idx]).to(device)
prediction = self.forward(user_tensor, movie_tensor)
return torch.clamp(prediction, 1, 5).item()
class HybridRecommender:
def __init__(self, n_users, n_movies):
self.n_users = n_users
self.n_movies = n_movies
self.item_cf = None
self.svd = None
self.ncf = None
self.weights = {
'item_cf': 0.3,
'svd': 0.4,
'ncf': 0.3
}
def predict(self, user_idx, movie_idx):
cf_pred = self.item_cf.predict(user_idx, movie_idx)
svd_pred = self.svd.predict(user_idx, movie_idx)
ncf_pred = self.ncf.predict(user_idx, movie_idx)
prediction = (
self.weights['item_cf'] * cf_pred +
self.weights['svd'] * svd_pred +
self.weights['ncf'] * ncf_pred
)
return np.clip(prediction, 1, 5)
def recommend_movies(self, user_id, N=10, user_id_map=None, reverse_movie_map=None, movies_df=None):
if user_id_map is not None:
if user_id not in user_id_map:
return []
user_idx = user_id_map[user_id]
else:
user_idx = user_id
rated_movies = set(np.where(self.item_cf.user_item_matrix[user_idx].toarray().flatten() > 0)[0])
scores = []
for movie_idx in range(self.n_movies):
if movie_idx not in rated_movies:
score = self.predict(user_idx, movie_idx)
scores.append((movie_idx, score))
scores.sort(key=lambda x: x[1], reverse=True)
top_recommendations = scores[:N]
recommendations = []
for movie_idx, score in top_recommendations:
if reverse_movie_map is not None:
original_movie_id = reverse_movie_map[movie_idx]
else:
original_movie_id = movie_idx
if movies_df is not None:
title = movies_df[movies_df['movie_id'] == original_movie_id]['title'].values[0]
else:
title = f"Movie {original_movie_id}"
recommendations.append((original_movie_id, title, score))
return recommendations
class MovieLensDataLoader:
def __init__(self, ratings_path=None, movies_path=None):
self.ratings_path = ratings_path
self.movies_path = movies_path
self.user_id_map = {}
self.movie_id_map = {}
self.reverse_user_map = {}
self.reverse_movie_map = {}
def load_model_and_data():
import os
print("Checking for files...")
print(f"Current directory: {os.getcwd()}")
print(f"Files in current directory: {os.listdir('.')}")
if os.path.exists('model_artifacts'):
print(f"Files in model_artifacts/: {os.listdir('model_artifacts')}")
else:
print("ERROR: model_artifacts/ folder does not exist!")
try:
files_to_check = [
'model_artifacts/hybrid_model.pkl',
'model_artifacts/loader.pkl',
'model_artifacts/movies.pkl'
]
for file_path in files_to_check:
if not os.path.exists(file_path):
print(f"ERROR: Missing file: {file_path}")
else:
file_size = os.path.getsize(file_path) / (1024*1024)
print(f"Found: {file_path} ({file_size:.2f} MB)")
with open('model_artifacts/hybrid_model.pkl', 'rb') as f:
model = pickle.load(f)
print("Loaded hybrid_model.pkl")
with open('model_artifacts/loader.pkl', 'rb') as f:
loader = pickle.load(f)
print("Loaded loader.pkl")
with open('model_artifacts/movies.pkl', 'rb') as f:
movies = pickle.load(f)
print("Loaded movies.pkl")
user_ids = sorted(loader.user_id_map.keys())
print(f"Model loaded successfully! {len(user_ids)} users available")
return model, loader, movies, user_ids
except FileNotFoundError as e:
print(f"ERROR: File not found - {e}")
print("Make sure all pkl files are in the model_artifacts/ folder")
return None, None, None, []
except Exception as e:
print(f"ERROR loading model: {type(e).__name__}: {e}")
import traceback
traceback.print_exc()
return None, None, None, []
print("Loading model and data...")
model, loader, movies_df, user_ids = load_model_and_data()
print(f"Model loaded! Available users: {len(user_ids)}")
def get_recommendations(user_id, num_recommendations):
if model is None or loader is None:
return "Error: Model not loaded properly. Please check the model files."
try:
user_id = int(user_id)
num_recommendations = int(num_recommendations)
if user_id not in loader.user_id_map:
return f"User ID {user_id} not found! Please select a valid user ID."
recommendations = model.recommend_movies(
user_id=user_id,
N=num_recommendations,
user_id_map=loader.user_id_map,
reverse_movie_map=loader.reverse_movie_map,
movies_df=movies_df
)
if not recommendations:
return f"No recommendations found for User {user_id}"
output = f"Top {num_recommendations} Movie Recommendations for User {user_id}\n\n"
output += "=" * 60 + "\n\n"
for i, (movie_id, title, score) in enumerate(recommendations, 1):
stars = "*" * int(score)
output += f"{i}. {title}\n"
output += f" Predicted Rating: {score:.2f}/5.00 {stars}\n"
output += f" Movie ID: {movie_id}\n\n"
return output
except ValueError:
return "Error: Please enter valid numbers for User ID and Number of Recommendations"
except Exception as e:
return f"Error generating recommendations: {str(e)}"
def get_user_history(user_id):
if model is None or loader is None:
return "Error: Model not loaded properly."
try:
user_id = int(user_id)
if user_id not in loader.user_id_map:
return f"User ID {user_id} not found!"
user_idx = loader.user_id_map[user_id]
user_ratings = model.item_cf.user_item_matrix[user_idx].toarray().flatten()
rated_indices = np.where(user_ratings > 0)[0]
if len(rated_indices) == 0:
return f"No rating history found for User {user_id}"
history = []
for movie_idx in rated_indices:
original_movie_id = loader.reverse_movie_map[movie_idx]
title = movies_df[movies_df['movie_id'] == original_movie_id]['title'].values[0]
rating = user_ratings[movie_idx]
history.append((title, rating))
history.sort(key=lambda x: x[1], reverse=True)
output = f"Rating History for User {user_id}\n\n"
output += f"Total movies rated: {len(history)}\n"
output += f"Average rating: {np.mean([r for _, r in history]):.2f}\n\n"
output += "=" * 60 + "\n\n"
output += "Top 10 Highest Rated Movies:\n\n"
for i, (title, rating) in enumerate(history[:10], 1):
stars = "*" * int(rating)
output += f"{i}. {title} - {rating:.1f}/5 {stars}\n"
return output
except Exception as e:
return f"Error: {str(e)}"
def get_movie_info(movie_title_search):
if movies_df is None:
return "Error: Movies data not loaded"
try:
matches = movies_df[movies_df['title'].str.contains(movie_title_search, case=False, na=False)]
if len(matches) == 0:
return f"No movies found matching '{movie_title_search}'"
output = f"Search Results for '{movie_title_search}'\n\n"
output += f"Found {len(matches)} movie(s):\n\n"
output += "=" * 60 + "\n\n"
for i, (_, row) in enumerate(matches.head(20).iterrows(), 1):
output += f"{i}. {row['title']} (ID: {row['movie_id']})\n"
if len(matches) > 20:
output += f"\n... and {len(matches) - 20} more results"
return output
except Exception as e:
return f"Error: {str(e)}"
with gr.Blocks(theme=gr.themes.Soft(), title="Movie Recommender - DataSynthis") as demo:
gr.Markdown("""
# Hybrid Movie Recommendation System
### DataSynthis Job Task - Powered by AI
This system combines Collaborative Filtering, SVD Matrix Factorization, and Neural Networks
to provide personalized movie recommendations from the MovieLens 1M dataset.
""")
with gr.Tabs():
with gr.Tab("Get Recommendations"):
gr.Markdown("### Get personalized movie recommendations for any user")
with gr.Row():
with gr.Column(scale=1):
user_id_input = gr.Number(
label="User ID",
value=1,
minimum=1,
maximum=6040,
step=1,
info=f"Enter a user ID (1-6040)"
)
num_recs_input = gr.Slider(
label="Number of Recommendations",
minimum=5,
maximum=20,
value=10,
step=1
)
recommend_btn = gr.Button("Get Recommendations", variant="primary")
with gr.Column(scale=2):
recommendations_output = gr.Textbox(
label="Recommendations",
lines=20,
max_lines=30
)
recommend_btn.click(
fn=get_recommendations,
inputs=[user_id_input, num_recs_input],
outputs=recommendations_output
)
gr.Markdown("""
**How it works:**
- Enter a User ID (between 1 and 6040)
- Choose how many recommendations you want
- Click "Get Recommendations" to see personalized movie suggestions
""")
with gr.Tab("User History"):
gr.Markdown("### View a user's rating history")
with gr.Row():
with gr.Column(scale=1):
user_id_history = gr.Number(
label="User ID",
value=1,
minimum=1,
maximum=6040,
step=1
)
history_btn = gr.Button("View History", variant="primary")
with gr.Column(scale=2):
history_output = gr.Textbox(
label="Rating History",
lines=20,
max_lines=30
)
history_btn.click(
fn=get_user_history,
inputs=user_id_history,
outputs=history_output
)
with gr.Tab("Search Movies"):
gr.Markdown("### Search for movies in the database")
with gr.Row():
with gr.Column(scale=1):
movie_search = gr.Textbox(
label="Movie Title Search",
placeholder="e.g., Star Wars, Godfather, Titanic...",
value="Star Wars"
)
search_btn = gr.Button("Search", variant="primary")
with gr.Column(scale=2):
search_output = gr.Textbox(
label="Search Results",
lines=20,
max_lines=30
)
search_btn.click(
fn=get_movie_info,
inputs=movie_search,
outputs=search_output
)
with gr.Tab("About"):
gr.Markdown("""
## About This System
### Model Architecture
This is a Hybrid Recommendation System that combines three powerful approaches:
1. Item-Based Collaborative Filtering
- Uses cosine similarity between movies
- Recommends movies similar to what you've liked before
2. SVD Matrix Factorization
- Decomposes the user-movie rating matrix
- Discovers latent factors that explain user preferences
3. Neural Collaborative Filtering (NCF)
- Deep learning model with user and movie embeddings
- Learns complex non-linear patterns in user behavior
### Dataset
- MovieLens 1M dataset
- 1,000,209 ratings from 6,040 users on 3,900 movies
- Ratings scale: 1-5 stars
### Performance Metrics
- Precision@10: 26.77%
- NDCG@10: 28.50%
- Model improves recommendations by 40% vs baseline
### Created For
DataSynthis Job Task
### Technologies Used
- PyTorch (Neural Networks)
- Scikit-learn (SVD, Similarity)
- Pandas & NumPy (Data Processing)
- Gradio (Web Interface)
Note: This model is trained on the MovieLens 1M dataset.
User IDs range from 1 to 6040, and movie IDs range from 1 to 3952.
""")
gr.Markdown("""
---
Hybrid Movie Recommendation System | Built for DataSynthis
""")
if __name__ == "__main__":
demo.launch(
share=False,
server_name="0.0.0.0",
server_port=7860
)