Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from diffusers import QwenImageLayeredPipeline
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from pptx import Presentation
|
| 5 |
+
import os
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import uuid
|
| 8 |
+
import numpy as np
|
| 9 |
+
import random
|
| 10 |
+
import spaces
|
| 11 |
+
import tempfile
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
LOG_DIR = "/tmp/local"
|
| 15 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 16 |
+
|
| 17 |
+
pipeline = QwenImageLayeredPipeline.from_pretrained("Qwen/Qwen-Image-Layered")
|
| 18 |
+
pipeline = pipeline.to("cuda", torch.bfloat16)
|
| 19 |
+
pipeline.set_progress_bar_config(disable=None)
|
| 20 |
+
|
| 21 |
+
def ensure_dirname(path: str):
|
| 22 |
+
if path and not os.path.exists(path):
|
| 23 |
+
os.makedirs(path, exist_ok=True)
|
| 24 |
+
|
| 25 |
+
def random_str(length=8):
|
| 26 |
+
return uuid.uuid4().hex[:length]
|
| 27 |
+
|
| 28 |
+
def imagelist_to_pptx(img_files):
|
| 29 |
+
with Image.open(img_files[0]) as img:
|
| 30 |
+
img_width_px, img_height_px = img.size
|
| 31 |
+
|
| 32 |
+
def px_to_emu(px, dpi=96):
|
| 33 |
+
inch = px / dpi
|
| 34 |
+
emu = inch * 914400
|
| 35 |
+
return int(emu)
|
| 36 |
+
|
| 37 |
+
prs = Presentation()
|
| 38 |
+
prs.slide_width = px_to_emu(img_width_px)
|
| 39 |
+
prs.slide_height = px_to_emu(img_height_px)
|
| 40 |
+
|
| 41 |
+
slide = prs.slides.add_slide(prs.slide_layouts[6])
|
| 42 |
+
|
| 43 |
+
left = top = 0
|
| 44 |
+
for img_path in img_files:
|
| 45 |
+
slide.shapes.add_picture(img_path, left, top, width=px_to_emu(img_width_px), height=px_to_emu(img_height_px))
|
| 46 |
+
|
| 47 |
+
with tempfile.NamedTemporaryFile(suffix=".pptx", delete=False) as tmp:
|
| 48 |
+
prs.save(tmp.name)
|
| 49 |
+
return tmp.name
|
| 50 |
+
|
| 51 |
+
def export_gallery(images):
|
| 52 |
+
# images: list of image file paths
|
| 53 |
+
images = [e[0] for e in images]
|
| 54 |
+
pptx_path = imagelist_to_pptx(images)
|
| 55 |
+
return pptx_path
|
| 56 |
+
|
| 57 |
+
@spaces.GPU(duration=300)
|
| 58 |
+
def infer(input_image,
|
| 59 |
+
seed=777,
|
| 60 |
+
randomize_seed=False,
|
| 61 |
+
prompt=None,
|
| 62 |
+
neg_prompt=" ",
|
| 63 |
+
true_guidance_scale=4.0,
|
| 64 |
+
num_inference_steps=50,
|
| 65 |
+
layer=4,
|
| 66 |
+
cfg_norm=True,
|
| 67 |
+
use_en_prompt=True):
|
| 68 |
+
|
| 69 |
+
if randomize_seed:
|
| 70 |
+
seed = random.randint(0, MAX_SEED)
|
| 71 |
+
|
| 72 |
+
if isinstance(input_image, list):
|
| 73 |
+
input_image = input_image[0]
|
| 74 |
+
|
| 75 |
+
if isinstance(input_image, str):
|
| 76 |
+
pil_image = Image.open(input_image).convert("RGB").convert("RGBA")
|
| 77 |
+
elif isinstance(input_image, Image.Image):
|
| 78 |
+
pil_image = input_image.convert("RGB").convert("RGBA")
|
| 79 |
+
elif isinstance(input_image, np.ndarray):
|
| 80 |
+
pil_image = Image.fromarray(input_image).convert("RGB").convert("RGBA")
|
| 81 |
+
else:
|
| 82 |
+
raise ValueError("Unsupported input_image type: %s" % type(input_image))
|
| 83 |
+
|
| 84 |
+
inputs = {
|
| 85 |
+
"image": pil_image,
|
| 86 |
+
"generator": torch.Generator(device='cuda').manual_seed(seed),
|
| 87 |
+
"true_cfg_scale": true_guidance_scale,
|
| 88 |
+
"prompt": prompt,
|
| 89 |
+
"negative_prompt": neg_prompt,
|
| 90 |
+
"num_inference_steps": num_inference_steps,
|
| 91 |
+
"num_images_per_prompt": 1,
|
| 92 |
+
"layers": layer,
|
| 93 |
+
"resolution": 640, # Using different bucket (640, 1024) to determine the resolution. For this version, 640 is recommended
|
| 94 |
+
"cfg_normalize": cfg_norm, # Whether enable cfg normalization.
|
| 95 |
+
"use_en_prompt": use_en_prompt,
|
| 96 |
+
}
|
| 97 |
+
print(inputs)
|
| 98 |
+
with torch.inference_mode():
|
| 99 |
+
output = pipeline(**inputs)
|
| 100 |
+
output_images = output.images[0]
|
| 101 |
+
|
| 102 |
+
output = []
|
| 103 |
+
for i, image in enumerate(output_images):
|
| 104 |
+
output.append(image)
|
| 105 |
+
return output
|
| 106 |
+
|
| 107 |
+
ensure_dirname(LOG_DIR)
|
| 108 |
+
examples = [
|
| 109 |
+
"assets/test_images/1.png",
|
| 110 |
+
"assets/test_images/2.png",
|
| 111 |
+
"assets/test_images/3.png",
|
| 112 |
+
"assets/test_images/4.png",
|
| 113 |
+
"assets/test_images/5.png",
|
| 114 |
+
"assets/test_images/6.png",
|
| 115 |
+
"assets/test_images/7.png",
|
| 116 |
+
"assets/test_images/8.png",
|
| 117 |
+
"assets/test_images/9.png",
|
| 118 |
+
"assets/test_images/10.png",
|
| 119 |
+
"assets/test_images/11.png",
|
| 120 |
+
"assets/test_images/12.png",
|
| 121 |
+
"assets/test_images/13.png",
|
| 122 |
+
]
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
with gr.Blocks() as demo:
|
| 126 |
+
with gr.Column(elem_id="col-container"):
|
| 127 |
+
gr.Image("assets/logo.png", width=600)
|
| 128 |
+
with gr.Row():
|
| 129 |
+
with gr.Column():
|
| 130 |
+
input_image = gr.Image(label="Input Image", image_mode="RGBA")
|
| 131 |
+
|
| 132 |
+
with gr.Column():
|
| 133 |
+
seed = gr.Slider(
|
| 134 |
+
label="Seed",
|
| 135 |
+
minimum=0,
|
| 136 |
+
maximum=MAX_SEED,
|
| 137 |
+
step=1,
|
| 138 |
+
value=0,
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
prompt = gr.Textbox(
|
| 145 |
+
label="Prompt (Optional)",
|
| 146 |
+
placeholder="Please enter the prompt to guide the decomposition (Optional)",
|
| 147 |
+
value="",
|
| 148 |
+
lines=2,
|
| 149 |
+
)
|
| 150 |
+
neg_prompt = gr.Textbox(
|
| 151 |
+
label="Negative Prompt (Optional)",
|
| 152 |
+
placeholder="Please enter the negative prompt",
|
| 153 |
+
value=" ",
|
| 154 |
+
lines=2,
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
with gr.Row():
|
| 158 |
+
true_guidance_scale = gr.Slider(
|
| 159 |
+
label="True guidance scale",
|
| 160 |
+
minimum=1.0,
|
| 161 |
+
maximum=10.0,
|
| 162 |
+
step=0.1,
|
| 163 |
+
value=4.0
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
num_inference_steps = gr.Slider(
|
| 167 |
+
label="Number of inference steps",
|
| 168 |
+
minimum=1,
|
| 169 |
+
maximum=50,
|
| 170 |
+
step=1,
|
| 171 |
+
value=50,
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
layer = gr.Slider(
|
| 175 |
+
label="Layers",
|
| 176 |
+
minimum=2,
|
| 177 |
+
maximum=10,
|
| 178 |
+
step=1,
|
| 179 |
+
value=4,
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
with gr.Row():
|
| 183 |
+
cfg_norm = gr.Checkbox(label="Whether enable CFG normalization", value=True)
|
| 184 |
+
use_en_prompt = gr.Checkbox(label="Automatic caption language if no prompt provided, True for EN, False for ZH", value=True)
|
| 185 |
+
|
| 186 |
+
with gr.Row():
|
| 187 |
+
run_button = gr.Button("Decompose!", variant="primary")
|
| 188 |
+
|
| 189 |
+
gallery = gr.Gallery(label="Layers", columns=4, rows=1, format="png")
|
| 190 |
+
export_btn = gr.Button("Export as PPTX")
|
| 191 |
+
export_file = gr.File(label="Download PPTX")
|
| 192 |
+
export_btn.click(
|
| 193 |
+
fn=export_gallery,
|
| 194 |
+
inputs=gallery,
|
| 195 |
+
outputs=export_file
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
gr.Examples(examples=examples,
|
| 199 |
+
inputs=[input_image],
|
| 200 |
+
outputs=[gallery],
|
| 201 |
+
fn=infer,
|
| 202 |
+
examples_per_page=14,
|
| 203 |
+
cache_examples=False,
|
| 204 |
+
run_on_click=True
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
run_button.click(
|
| 208 |
+
fn=infer,
|
| 209 |
+
inputs=[
|
| 210 |
+
input_image,
|
| 211 |
+
seed,
|
| 212 |
+
randomize_seed,
|
| 213 |
+
prompt,
|
| 214 |
+
neg_prompt,
|
| 215 |
+
true_guidance_scale,
|
| 216 |
+
num_inference_steps,
|
| 217 |
+
layer,
|
| 218 |
+
cfg_norm,
|
| 219 |
+
use_en_prompt,
|
| 220 |
+
],
|
| 221 |
+
outputs=gallery,
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
if __name__ == "__main__":
|
| 225 |
+
demo.launch()
|