Spaces:
Running
Running
File size: 18,819 Bytes
42f5b98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
"""UI event handlers for Gradio interface."""
import json
from datetime import datetime
from pathlib import Path
from typing import Iterator, Optional
import torch
from coderag.config import get_settings
from coderag.generation.generator import ResponseGenerator
from coderag.indexing.embeddings import EmbeddingGenerator
from coderag.indexing.vectorstore import VectorStore
from coderag.ingestion.chunker import CodeChunker
from coderag.ingestion.filter import FileFilter
from coderag.ingestion.loader import RepositoryLoader
from coderag.ingestion.validator import GitHubURLValidator, ValidationError
from coderag.logging import get_logger
from coderag.models.chunk import Chunk
from coderag.models.document import Document
from coderag.models.query import Query
from coderag.models.repository import Repository, RepositoryStatus
logger = get_logger(__name__)
class UIHandlers:
"""Handlers for Gradio UI events."""
def __init__(self) -> None:
self.settings = get_settings()
self.validator = GitHubURLValidator()
self.loader = RepositoryLoader()
self.filter = FileFilter()
self.chunker = CodeChunker()
self.embedder = EmbeddingGenerator()
self.vectorstore = VectorStore()
self.generator: Optional[ResponseGenerator] = None
# Repository metadata storage
self.repos_file = self.settings.data_dir / "repositories.json"
self.repositories: dict[str, Repository] = self._load_repositories()
def _load_repositories(self) -> dict[str, Repository]:
if self.repos_file.exists():
try:
data = json.loads(self.repos_file.read_text())
return {r["id"]: Repository.from_dict(r) for r in data}
except Exception as e:
logger.error("Failed to load repositories", error=str(e))
return {}
def _save_repositories(self) -> None:
self.repos_file.parent.mkdir(parents=True, exist_ok=True)
data = [r.to_dict() for r in self.repositories.values()]
self.repos_file.write_text(json.dumps(data, indent=2))
# =========================================================================
# Streaming Methods (Nivel 1)
# =========================================================================
def _document_generator(
self,
files: list[Path],
repo_path: Path,
repo_id: str,
) -> Iterator[Document]:
"""Generate documents one by one without accumulating in memory."""
for file_path in files:
try:
yield Document.from_file(file_path, repo_path, repo_id)
except Exception as e:
logger.warning("Failed to load file", path=str(file_path), error=str(e))
def _process_batch(self, chunks: list[Chunk]) -> int:
"""Process a batch: embed + store + release memory."""
if not chunks:
return 0
embedded = self.embedder.embed_chunks(chunks, show_progress=False)
self.vectorstore.add_chunks(embedded)
# Release memory
del embedded
if torch.cuda.is_available():
torch.cuda.empty_cache()
return len(chunks)
def _stream_index_repository(
self,
documents: Iterator[Document],
repo_id: str,
batch_size: int = 100,
progress_callback: Optional[callable] = None,
) -> int:
"""Index using streaming with batches."""
total_chunks = 0
batch: list[Chunk] = []
doc_count = 0
for doc in documents:
doc_count += 1
for chunk in self.chunker.chunk_document(doc):
chunk.repo_id = repo_id
batch.append(chunk)
if len(batch) >= batch_size:
total_chunks += self._process_batch(batch)
logger.info("Batch processed", total_so_far=total_chunks, docs_processed=doc_count)
if progress_callback:
progress_callback(total_chunks, doc_count)
batch = []
# Process final batch
if batch:
total_chunks += self._process_batch(batch)
if progress_callback:
progress_callback(total_chunks, doc_count)
return total_chunks
# =========================================================================
# Validation Methods (Nivel 2)
# =========================================================================
def _estimate_repo_size(self, files: list[Path]) -> dict:
"""Estimate repository size before indexing."""
total_size_kb = 0
estimated_chunks = 0
chunk_size = self.settings.ingestion.chunk_size
for file_path in files:
try:
size_kb = file_path.stat().st_size / 1024
total_size_kb += size_kb
# Rough estimate: 1 chunk per chunk_size characters
estimated_chunks += max(1, int(size_kb * 1024 / chunk_size))
except Exception:
continue
return {
"file_count": len(files),
"total_size_kb": total_size_kb,
"estimated_chunks": estimated_chunks,
"exceeds_file_limit": len(files) > self.settings.ingestion.max_files_per_repo,
"exceeds_chunk_limit": estimated_chunks > self.settings.ingestion.max_total_chunks,
"warn_large_repo": len(files) > self.settings.ingestion.warn_files_threshold,
}
def _validate_repo_size(self, estimate: dict) -> tuple[bool, str]:
"""Validate if the repository can be indexed."""
if estimate["exceeds_file_limit"]:
return False, f"Repository exceeds file limit ({estimate['file_count']} > {self.settings.ingestion.max_files_per_repo})"
if estimate["exceeds_chunk_limit"]:
return False, f"Repository exceeds chunk limit (~{estimate['estimated_chunks']} > {self.settings.ingestion.max_total_chunks})"
warning = ""
if estimate["warn_large_repo"]:
warning = f"Large repository ({estimate['file_count']} files, ~{estimate['estimated_chunks']} chunks). Processing may take several minutes."
return True, warning
# =========================================================================
# Incremental Indexing Methods (Nivel 3)
# =========================================================================
def _get_current_commit(self, repo_path: Path) -> str:
"""Get the SHA of the current commit."""
from git import Repo
git_repo = Repo(repo_path)
return git_repo.head.commit.hexsha
def _get_changed_files(
self,
repo_path: Path,
last_commit: str,
current_commit: str,
) -> tuple[set[str], set[str], set[str]]:
"""Get files that were added, modified, or deleted between commits."""
from git import Repo
git_repo = Repo(repo_path)
diff = git_repo.commit(last_commit).diff(current_commit)
added: set[str] = set()
modified: set[str] = set()
deleted: set[str] = set()
for d in diff:
if d.new_file:
added.add(d.b_path)
elif d.deleted_file:
deleted.add(d.a_path)
elif d.renamed:
deleted.add(d.a_path)
added.add(d.b_path)
else:
modified.add(d.b_path or d.a_path)
return added, modified, deleted
def index_repository_incremental(self, repo_id: str) -> str:
"""Update only modified files since last indexing (incremental update)."""
# Find repository by full or partial ID
found_repo = None
for rid, repo in self.repositories.items():
if rid == repo_id or rid.startswith(repo_id):
found_repo = repo
break
if not found_repo:
return "Repository not found"
repo = found_repo
if not repo.last_commit:
return "No previous indexing found. Please re-index the full repository."
if not repo.clone_path or not Path(repo.clone_path).exists():
return "Repository cache not found. Please re-index."
try:
repo_path = Path(repo.clone_path)
# Update local repository
logger.info("Updating local repository", repo_id=repo.id)
self.loader._update_repository(repo_path, repo.branch, None)
current_commit = self._get_current_commit(repo_path)
if current_commit == repo.last_commit:
return "Repository is already up to date."
added, modified, deleted = self._get_changed_files(
repo_path, repo.last_commit, current_commit
)
logger.info(
"Changes detected",
added=len(added),
modified=len(modified),
deleted=len(deleted),
)
# Delete chunks for deleted/modified files
for file_path in deleted | modified:
self.vectorstore.delete_file_chunks(repo.id, file_path)
# Index new/modified files
files_to_index = []
file_filter = FileFilter()
for file_path in added | modified:
full_path = repo_path / file_path
if full_path.exists() and file_filter.should_include(full_path, repo_path):
files_to_index.append(full_path)
new_chunks = 0
if files_to_index:
batch_size = self.settings.ingestion.batch_size
doc_generator = self._document_generator(files_to_index, repo_path, repo.id)
new_chunks = self._stream_index_repository(doc_generator, repo.id, batch_size)
# Update metadata
repo.last_commit = current_commit
repo.indexed_at = datetime.now()
repo.chunk_count = self.vectorstore.get_repo_chunk_count(repo.id)
self._save_repositories()
return (
f"Incremental update complete:\n"
f"- Added/Modified: {len(added | modified)} files\n"
f"- Deleted: {len(deleted)} files\n"
f"- New chunks: {new_chunks}\n"
f"- Total chunks: {repo.chunk_count}"
)
except Exception as e:
logger.error("Incremental indexing failed", error=str(e), exc_info=True)
return f"Error: {str(e)}"
def index_repository(
self,
url: str,
branch: str = "",
include_patterns: str = "",
exclude_patterns: str = "",
) -> Iterator[str]:
"""Index a GitHub repository with progress updates."""
try:
# Validate URL (sync version, skip accessibility check for UI)
yield "Validating repository URL..."
logger.info("Starting indexing", url=url, branch=branch)
repo_info = self.validator.parse_url(url)
branch = branch.strip() or repo_info.branch or "main"
# Create repository record
repo = Repository(
url=repo_info.url,
branch=branch,
status=RepositoryStatus.CLONING,
)
self.repositories[repo.id] = repo
# Clone repository
yield f"Cloning {repo_info.full_name} (branch: {branch})..."
logger.info("Cloning repository", url=url, branch=branch)
repo_path = self.loader.clone_repository(repo_info, branch)
repo.clone_path = repo_path
repo.status = RepositoryStatus.INDEXING
# Setup filter with custom patterns
include = [p.strip() for p in include_patterns.split(",") if p.strip()] or None
exclude = [p.strip() for p in exclude_patterns.split(",") if p.strip()] or None
file_filter = FileFilter(include_patterns=include, exclude_patterns=exclude)
# Process files
yield "Scanning files..."
logger.info("Filtering files", repo_path=str(repo_path))
files = list(file_filter.filter_files(repo_path))
file_count = len(files)
logger.info("Files to process", count=file_count)
# Validate repository size (Nivel 2)
estimate = self._estimate_repo_size(files)
can_proceed, message = self._validate_repo_size(estimate)
if not can_proceed:
repo.status = RepositoryStatus.ERROR
repo.error_message = message
self._save_repositories()
yield f"Error: {message}"
return
if message:
logger.warning(message)
yield f"Warning: {message}"
yield f"Found {file_count} files to index (~{estimate['estimated_chunks']} chunks)"
# Delete existing chunks for this repo (re-indexing)
logger.info("Deleting previous chunks for repo", repo_id=repo.id)
self.vectorstore.delete_repo_chunks(repo.id)
# Stream indexing with batches and progress updates
yield f"Indexing... (0/{file_count} files, 0 chunks)"
logger.info("Starting streaming indexing", file_count=file_count)
batch_size = self.settings.ingestion.batch_size
doc_generator = self._document_generator(files, repo_path, repo.id)
# Process with progress updates
total_chunks = 0
batch: list[Chunk] = []
doc_count = 0
for doc in doc_generator:
doc_count += 1
for chunk in self.chunker.chunk_document(doc):
chunk.repo_id = repo.id
batch.append(chunk)
if len(batch) >= batch_size:
total_chunks += self._process_batch(batch)
batch = []
# Yield progress update
yield f"Indexing... ({doc_count}/{file_count} files, {total_chunks} chunks)"
# Process final batch
if batch:
total_chunks += self._process_batch(batch)
logger.info("Streaming indexing complete", chunk_count=total_chunks)
# Save current commit for incremental updates (Nivel 3)
try:
repo.last_commit = self._get_current_commit(repo_path)
except Exception:
repo.last_commit = None
# Update repository status
repo.chunk_count = total_chunks
repo.indexed_at = datetime.now()
repo.status = RepositoryStatus.READY
self._save_repositories()
result = f"Successfully indexed {repo_info.full_name}\n{file_count} files processed\n{total_chunks} chunks indexed"
logger.info("Indexing complete", result=result)
yield result
except ValidationError as e:
logger.error("Validation error", error=str(e))
yield f"Validation error: {str(e)}"
except Exception as e:
logger.error("Indexing failed", error=str(e), exc_info=True)
if "repo" in locals():
repo.status = RepositoryStatus.ERROR
repo.error_message = str(e)
self._save_repositories()
yield f"Error: {str(e)}"
def ask_question(
self,
repo_id: str,
question: str,
top_k: int = 5,
) -> tuple[str, str, str]:
"""Ask a question about a repository."""
if not repo_id:
return "", "", "Please select a repository"
if not question.strip():
return "", "", "Please enter a question"
try:
# Lazy load generator
if self.generator is None:
self.generator = ResponseGenerator()
query = Query(
question=question.strip(),
repo_id=repo_id,
top_k=int(top_k),
)
response = self.generator.generate(query)
# Format answer
answer_md = f"## Answer\n\n{response.answer}"
if response.citations:
answer_md += "\n\n### Citations\n"
for citation in response.citations:
answer_md += f"- `{citation}`\n"
# Format evidence
evidence_md = response.format_evidence()
status = "Grounded" if response.grounded else "Not grounded (no citations)"
return answer_md, evidence_md, status
except Exception as e:
logger.error("Question failed", error=str(e))
return "", "", f"Error: {str(e)}"
def get_repositories(self):
"""Get list of repositories for dropdown."""
import gradio as gr
choices = []
for repo in self.repositories.values():
if repo.status == RepositoryStatus.READY:
label = f"{repo.full_name} ({repo.chunk_count} chunks)"
choices.append((label, repo.id))
return gr.update(choices=choices)
def get_repositories_table(self) -> list[list]:
"""Get repositories as table data."""
rows = []
for repo in self.repositories.values():
rows.append([
repo.id[:8],
repo.full_name,
repo.branch,
repo.chunk_count,
repo.status.value,
repo.indexed_at.strftime("%Y-%m-%d %H:%M") if repo.indexed_at else "-",
])
return rows
def delete_repository(self, repo_id: str) -> tuple[str, list[list]]:
"""Delete a repository."""
repo_id = repo_id.strip()
# Find by full or partial ID
found_repo = None
for rid, repo in self.repositories.items():
if rid == repo_id or rid.startswith(repo_id):
found_repo = repo
break
if not found_repo:
return "Repository not found", self.get_repositories_table()
try:
# Delete from vector store
self.vectorstore.delete_repo_chunks(found_repo.id)
# Delete cached repo
self.loader.delete_cache(
type("RepoInfo", (), {"owner": found_repo.owner, "name": found_repo.name})()
)
# Remove from records
del self.repositories[found_repo.id]
self._save_repositories()
return f"Deleted {found_repo.full_name}", self.get_repositories_table()
except Exception as e:
logger.error("Delete failed", error=str(e))
return f"Error: {str(e)}", self.get_repositories_table()
|