Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,25 +8,23 @@ import cv2
|
|
| 8 |
|
| 9 |
# Load ControlNet (depth)
|
| 10 |
controlnet = ControlNetModel.from_pretrained(
|
| 11 |
-
"lllyasviel/sd-controlnet-depth", torch_dtype=torch.
|
| 12 |
)
|
| 13 |
|
| 14 |
-
# Load SD pipeline with ControlNet
|
| 15 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 16 |
"runwayml/stable-diffusion-v1-5",
|
| 17 |
controlnet=controlnet,
|
| 18 |
-
torch_dtype=torch.
|
| 19 |
-
).to("
|
| 20 |
-
|
| 21 |
-
# β
Removed: pipe.enable_model_cpu_offload()
|
| 22 |
|
| 23 |
# Depth model
|
| 24 |
-
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("
|
| 25 |
depth_processor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
|
| 26 |
|
| 27 |
def generate(input_image, prompt):
|
| 28 |
image = input_image.convert("RGB")
|
| 29 |
-
inputs = depth_processor(images=image, return_tensors="pt").to("
|
| 30 |
|
| 31 |
with torch.no_grad():
|
| 32 |
outputs = depth_model(**inputs)
|
|
@@ -38,9 +36,9 @@ def generate(input_image, prompt):
|
|
| 38 |
result = pipe(
|
| 39 |
prompt=prompt,
|
| 40 |
image=depth_image,
|
| 41 |
-
height=
|
| 42 |
-
|
| 43 |
-
num_inference_steps=
|
| 44 |
).images[0]
|
| 45 |
|
| 46 |
return result
|
|
@@ -54,5 +52,5 @@ gr.Interface(
|
|
| 54 |
],
|
| 55 |
outputs=gr.Image(type="pil", label="Generated Room"),
|
| 56 |
title="ποΈ AI Interior Designer",
|
| 57 |
-
description="Upload your room and get a styled redesign using ControlNet (Depth).",
|
| 58 |
).launch()
|
|
|
|
| 8 |
|
| 9 |
# Load ControlNet (depth)
|
| 10 |
controlnet = ControlNetModel.from_pretrained(
|
| 11 |
+
"lllyasviel/sd-controlnet-depth", torch_dtype=torch.float16
|
| 12 |
)
|
| 13 |
|
| 14 |
+
# Load SD pipeline with ControlNet and enable CUDA for faster generation
|
| 15 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 16 |
"runwayml/stable-diffusion-v1-5",
|
| 17 |
controlnet=controlnet,
|
| 18 |
+
torch_dtype=torch.float16
|
| 19 |
+
).to("cuda")
|
|
|
|
|
|
|
| 20 |
|
| 21 |
# Depth model
|
| 22 |
+
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
|
| 23 |
depth_processor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
|
| 24 |
|
| 25 |
def generate(input_image, prompt):
|
| 26 |
image = input_image.convert("RGB")
|
| 27 |
+
inputs = depth_processor(images=image, return_tensors="pt").to("cuda")
|
| 28 |
|
| 29 |
with torch.no_grad():
|
| 30 |
outputs = depth_model(**inputs)
|
|
|
|
| 36 |
result = pipe(
|
| 37 |
prompt=prompt,
|
| 38 |
image=depth_image,
|
| 39 |
+
height=512,
|
| 40 |
+
width=768,
|
| 41 |
+
num_inference_steps=5 # π₯ Faster generation
|
| 42 |
).images[0]
|
| 43 |
|
| 44 |
return result
|
|
|
|
| 52 |
],
|
| 53 |
outputs=gr.Image(type="pil", label="Generated Room"),
|
| 54 |
title="ποΈ AI Interior Designer",
|
| 55 |
+
description="Upload your room and get a styled redesign using ControlNet (Depth). Optimized for fast generation.",
|
| 56 |
).launch()
|