Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,14 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
#
|
|
|
|
|
|
|
| 5 |
tokenizer = AutoTokenizer.from_pretrained("alemmrr/finbert-gics-sector-classifier")
|
| 6 |
model = AutoModelForSequenceClassification.from_pretrained("alemmrr/finbert-gics-sector-classifier")
|
| 7 |
|
|
@@ -9,12 +16,62 @@ clf = pipeline(
|
|
| 9 |
"text-classification",
|
| 10 |
model=model,
|
| 11 |
tokenizer=tokenizer,
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
)
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
def predict(text):
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# FIX: Flatten output if it's list-of-lists
|
| 20 |
if isinstance(outputs, list) and len(outputs) == 1 and isinstance(outputs[0], list):
|
|
@@ -32,12 +89,19 @@ def predict(text):
|
|
| 32 |
scores = sorted(scores, key=lambda x: x["confidence"], reverse=True)
|
| 33 |
return scores
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
demo = gr.Interface(
|
| 36 |
fn=predict,
|
| 37 |
-
inputs=gr.Textbox(lines=3, label="Enter text"),
|
| 38 |
outputs=gr.JSON(label="All Sector Scores"),
|
| 39 |
-
title="FinBERT GICS Sector Classifier",
|
| 40 |
-
description=
|
|
|
|
|
|
|
|
|
|
| 41 |
)
|
| 42 |
|
| 43 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import (
|
| 3 |
+
AutoTokenizer,
|
| 4 |
+
AutoModelForSequenceClassification,
|
| 5 |
+
AutoModelForTokenClassification,
|
| 6 |
+
pipeline
|
| 7 |
+
)
|
| 8 |
|
| 9 |
+
# -----------------------------
|
| 10 |
+
# Load Your Classifier
|
| 11 |
+
# -----------------------------
|
| 12 |
tokenizer = AutoTokenizer.from_pretrained("alemmrr/finbert-gics-sector-classifier")
|
| 13 |
model = AutoModelForSequenceClassification.from_pretrained("alemmrr/finbert-gics-sector-classifier")
|
| 14 |
|
|
|
|
| 16 |
"text-classification",
|
| 17 |
model=model,
|
| 18 |
tokenizer=tokenizer,
|
| 19 |
+
top_k=None,
|
| 20 |
+
device=-1
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
# -----------------------------
|
| 24 |
+
# Load NER Model (for auto-formatting)
|
| 25 |
+
# -----------------------------
|
| 26 |
+
ner_pipeline = pipeline(
|
| 27 |
+
"ner",
|
| 28 |
+
model="Jean-Baptiste/roberta-large-ner-english",
|
| 29 |
+
aggregation_strategy="simple"
|
| 30 |
)
|
| 31 |
|
| 32 |
+
# -----------------------------
|
| 33 |
+
# Helper: Format headline (Variant 3 Prefixing)
|
| 34 |
+
# -----------------------------
|
| 35 |
+
def format_headline_variant3(headline):
|
| 36 |
+
ents = ner_pipeline(headline)
|
| 37 |
+
|
| 38 |
+
# Buckets (same as training Variant-3)
|
| 39 |
+
entity_buckets = {
|
| 40 |
+
"ORG": [],
|
| 41 |
+
"LOC": [],
|
| 42 |
+
"PER": [],
|
| 43 |
+
"GPE": []
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
# Fill buckets
|
| 47 |
+
for ent in ents:
|
| 48 |
+
tag = ent["entity_group"]
|
| 49 |
+
word = ent["word"]
|
| 50 |
+
if tag in entity_buckets:
|
| 51 |
+
entity_buckets[tag].append(word)
|
| 52 |
+
|
| 53 |
+
# Build prefix
|
| 54 |
+
prefix = ""
|
| 55 |
+
for tag, values in entity_buckets.items():
|
| 56 |
+
if values:
|
| 57 |
+
prefix += f"[{tag}] " + " | ".join(values) + " "
|
| 58 |
+
|
| 59 |
+
# Append [SEP] if any prefix exists
|
| 60 |
+
if prefix:
|
| 61 |
+
prefix = prefix.strip() + " [SEP] "
|
| 62 |
+
|
| 63 |
+
# Return final formatted input for classifier
|
| 64 |
+
return prefix + headline
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
# -----------------------------
|
| 68 |
+
# Main Prediction Function
|
| 69 |
+
# -----------------------------
|
| 70 |
def predict(text):
|
| 71 |
+
# Auto-format headline → Variant 3
|
| 72 |
+
formatted = format_headline_variant3(text)
|
| 73 |
+
|
| 74 |
+
outputs = clf(formatted)
|
| 75 |
|
| 76 |
# FIX: Flatten output if it's list-of-lists
|
| 77 |
if isinstance(outputs, list) and len(outputs) == 1 and isinstance(outputs[0], list):
|
|
|
|
| 89 |
scores = sorted(scores, key=lambda x: x["confidence"], reverse=True)
|
| 90 |
return scores
|
| 91 |
|
| 92 |
+
|
| 93 |
+
# -----------------------------
|
| 94 |
+
# Gradio Interface
|
| 95 |
+
# -----------------------------
|
| 96 |
demo = gr.Interface(
|
| 97 |
fn=predict,
|
| 98 |
+
inputs=gr.Textbox(lines=3, label="Enter a financial headline (plain text)"),
|
| 99 |
outputs=gr.JSON(label="All Sector Scores"),
|
| 100 |
+
title="FinBERT GICS Sector Classifier (Auto-Formatted)",
|
| 101 |
+
description=(
|
| 102 |
+
"Enter a plain financial news headline. The app automatically applies NER tagging "
|
| 103 |
+
"and formats the text using the Variant-3 prefix structure before running classification."
|
| 104 |
+
),
|
| 105 |
)
|
| 106 |
|
| 107 |
demo.launch()
|