Spaces:
Paused
Paused
| import os | |
| import requests | |
| import subprocess | |
| import tarfile | |
| import stat | |
| from huggingface_hub import hf_hub_download | |
| from langchain.llms.base import LLM | |
| from langchain.chains import RetrievalQA | |
| from langchain_core.prompts import PromptTemplate | |
| from typing import Any, List, Optional, Mapping | |
| # --- Helper to Setup llama-cli --- | |
| def setup_llama_cli(): | |
| """ | |
| Download and extract llama-cli binary and libs from official releases | |
| """ | |
| # Latest release URL for Linux x64 (b4991 equivalent or newer) | |
| # Using the one found: b7312 | |
| CLI_URL = "https://github.com/ggml-org/llama.cpp/releases/download/b7312/llama-b7312-bin-ubuntu-x64.tar.gz" | |
| LOCAL_TAR = "llama-cli.tar.gz" | |
| BIN_DIR = "./llama_bin" # Extract to a subdirectory | |
| CLI_BIN = os.path.join(BIN_DIR, "bin/llama-cli") # Standard structure usually has bin/ | |
| if os.path.exists(CLI_BIN): | |
| return CLI_BIN, BIN_DIR | |
| try: | |
| print("β¬οΈ Downloading llama-cli binary...") | |
| response = requests.get(CLI_URL, stream=True) | |
| if response.status_code == 200: | |
| with open(LOCAL_TAR, 'wb') as f: | |
| for chunk in response.iter_content(chunk_size=8192): | |
| f.write(chunk) | |
| print("π¦ Extracting llama-cli...") | |
| # Create dir | |
| os.makedirs(BIN_DIR, exist_ok=True) | |
| with tarfile.open(LOCAL_TAR, "r:gz") as tar: | |
| tar.extractall(path=BIN_DIR) | |
| # Locate the binary (it might be in bin/ or root of tar) | |
| # We search for it | |
| found_bin = None | |
| for root, dirs, files in os.walk(BIN_DIR): | |
| if "llama-cli" in files: | |
| found_bin = os.path.join(root, "llama-cli") | |
| break | |
| if not found_bin: | |
| print("β Could not find llama-cli in extracted files.") | |
| return None, None | |
| # Make executable | |
| st = os.stat(found_bin) | |
| os.chmod(found_bin, st.st_mode | stat.S_IEXEC) | |
| print(f"β llama-cli binary ready at {found_bin}!") | |
| return found_bin, BIN_DIR | |
| else: | |
| print(f"β Failed to download binary: {response.status_code}") | |
| return None, None | |
| except Exception as e: | |
| print(f"β Error setting up llama-cli: {e}") | |
| return None, None | |
| # --- Custom LangChain LLM Wrapper for Hybrid Approach --- | |
| class HybridLLM(LLM): | |
| api_url: str = "" | |
| model_path: str = "" | |
| cli_path: str = "" | |
| lib_path: str = "" # Path to folder containing .so files | |
| def _llm_type(self) -> str: | |
| return "hybrid_llm" | |
| def _call(self, prompt: str, stop: Optional[List[str]] = None, **kwargs: Any) -> str: | |
| # 1. Try Colab API first | |
| if self.api_url: | |
| try: | |
| print(f"π Calling Colab API: {self.api_url}") | |
| response = requests.post( | |
| f"{self.api_url}/generate", | |
| json={"prompt": prompt, "max_tokens": 512}, | |
| timeout=30 | |
| ) | |
| if response.status_code == 200: | |
| return response.json()["response"] | |
| else: | |
| print(f"β οΈ API Error {response.status_code}: {response.text}") | |
| except Exception as e: | |
| print(f"β οΈ API Connection Failed: {e}") | |
| # 2. Fallback to Local llama-cli | |
| if self.model_path and self.cli_path and os.path.exists(self.cli_path): | |
| print("π» Using Local llama-cli Fallback...") | |
| try: | |
| # Construct command | |
| cmd = [ | |
| self.cli_path, | |
| "-m", self.model_path, | |
| "-p", prompt, | |
| "-n", "512", | |
| "--temp", "0.7", | |
| "--no-display-prompt", # Don't echo prompt | |
| "-c", "2048" # Context size | |
| ] | |
| # Setup Environment with LD_LIBRARY_PATH | |
| env = os.environ.copy() | |
| # Add the directory containing the binary (and likely libs) to LD_LIBRARY_PATH | |
| # Also check 'lib' subdir if it exists | |
| lib_paths = [os.path.dirname(self.cli_path)] | |
| lib_subdir = os.path.join(self.lib_path, "lib") | |
| if os.path.exists(lib_subdir): | |
| lib_paths.append(lib_subdir) | |
| env["LD_LIBRARY_PATH"] = ":".join(lib_paths) + ":" + env.get("LD_LIBRARY_PATH", "") | |
| # Run binary | |
| result = subprocess.run( | |
| cmd, | |
| capture_output=True, | |
| text=True, | |
| encoding='utf-8', | |
| errors='replace', | |
| env=env | |
| ) | |
| if result.returncode == 0: | |
| return result.stdout.strip() | |
| else: | |
| return f"β llama-cli Error: {result.stderr}" | |
| except Exception as e: | |
| return f"β Local Inference Failed: {e}" | |
| return "β Error: No working LLM available (API failed and no local model)." | |
| def _identifying_params(self) -> Mapping[str, Any]: | |
| return {"api_url": self.api_url, "model_path": self.model_path} | |
| class LLMClient: | |
| def __init__(self, vector_store=None): | |
| """ | |
| Initialize Hybrid LLM Client with Binary Wrapper | |
| """ | |
| self.vector_store = vector_store | |
| self.api_url = os.environ.get("COLAB_API_URL", "") | |
| self.model_path = None | |
| self.cli_path = None | |
| self.lib_path = None | |
| # Setup Local Fallback | |
| try: | |
| # 1. Setup Binary | |
| self.cli_path, self.lib_path = setup_llama_cli() | |
| # 2. Download Model (Qwen3-0.6B) | |
| print("π Loading Local Qwen3-0.6B (GGUF)...") | |
| model_repo = "Qwen/Qwen3-0.6B-GGUF" | |
| filename = "Qwen3-0.6B-Q8_0.gguf" | |
| self.model_path = hf_hub_download( | |
| repo_id=model_repo, | |
| filename=filename | |
| ) | |
| print(f"β Model downloaded to: {self.model_path}") | |
| except Exception as e: | |
| print(f"β οΈ Could not setup local fallback: {e}") | |
| # Create Hybrid LangChain Wrapper | |
| self.llm = HybridLLM( | |
| api_url=self.api_url, | |
| model_path=self.model_path, | |
| cli_path=self.cli_path, | |
| lib_path=self.lib_path | |
| ) | |
| def analyze(self, text, context_chunks=None): | |
| """ | |
| Analyze text using LangChain RetrievalQA | |
| """ | |
| if not self.vector_store: | |
| return "β Vector Store not initialized." | |
| # Custom Prompt Template | |
| template = """<|im_start|>system | |
| You are a cybersecurity expert. Task: Determine whether the input is 'PHISHING' or 'BENIGN' (Safe). | |
| Respond in the following format: | |
| LABEL: [PHISHING or BENIGN] | |
| EXPLANATION: [A brief Vietnamese explanation] | |
| Context: | |
| {context} | |
| <|im_end|> | |
| <|im_start|>user | |
| Input: | |
| {question} | |
| Short Analysis: | |
| <|im_end|> | |
| <|im_start|>assistant | |
| """ | |
| PROMPT = PromptTemplate( | |
| template=template, | |
| input_variables=["context", "question"] | |
| ) | |
| # Create QA Chain | |
| qa_chain = RetrievalQA.from_chain_type( | |
| llm=self.llm, | |
| chain_type="stuff", | |
| retriever=self.vector_store.as_retriever(search_kwargs={"k": 3}), | |
| chain_type_kwargs={"prompt": PROMPT} | |
| ) | |
| try: | |
| print("π€ Generating response...") | |
| response = qa_chain.invoke(text) | |
| return response['result'] | |
| except Exception as e: | |
| return f"β Error: {str(e)}" | |