Spaces:
Paused
Paused
Upload app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import torch
|
| 2 |
import torch.nn.functional as F
|
| 3 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
from huggingface_hub import hf_hub_download
|
| 5 |
import gradio as gr
|
| 6 |
import requests
|
|
@@ -20,8 +20,8 @@ from rag_engine import RAGEngine
|
|
| 20 |
from llm_client import LLMClient
|
| 21 |
|
| 22 |
# --------- Config ----------
|
| 23 |
-
REPO_ID = "dungeon29/deberta-lstm
|
| 24 |
-
CKPT_NAME = "
|
| 25 |
MODEL_NAME = "microsoft/deberta-base" # base tokenizer/backbone
|
| 26 |
LABELS = ["benign", "phishing"] # adjust to your classes
|
| 27 |
|
|
@@ -33,27 +33,48 @@ LABELS = ["benign", "phishing"] # adjust to your classes
|
|
| 33 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 34 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 35 |
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
checkpoint = torch.load(ckpt_path, map_location=device)
|
| 38 |
|
| 39 |
# If you saved hyperparams in the checkpoint, use them:
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
# Load weights
|
| 43 |
try:
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
state_dict =
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
else:
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
model.to(device).eval()
|
| 59 |
|
|
@@ -360,7 +381,7 @@ def rag_predict_fn(text: str):
|
|
| 360 |
|
| 361 |
if fetched_content:
|
| 362 |
# Limit content length to avoid token overflow
|
| 363 |
-
truncated_content = fetched_content[:
|
| 364 |
analysis_context = f"URL: {input_text}\n\nWebsite Content:\n{truncated_content}\n..."
|
| 365 |
print(f"✅ Successfully fetched {len(fetched_content)} chars from URL.")
|
| 366 |
else:
|
|
|
|
| 1 |
import torch
|
| 2 |
import torch.nn.functional as F
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
from huggingface_hub import hf_hub_download
|
| 5 |
import gradio as gr
|
| 6 |
import requests
|
|
|
|
| 20 |
from llm_client import LLMClient
|
| 21 |
|
| 22 |
# --------- Config ----------
|
| 23 |
+
REPO_ID = "dungeon29/phishing-deberta-lstm" # HF repo that holds the checkpoint
|
| 24 |
+
CKPT_NAME = "deberta_lstm_checkpoint.pt" # the .pt file name
|
| 25 |
MODEL_NAME = "microsoft/deberta-base" # base tokenizer/backbone
|
| 26 |
LABELS = ["benign", "phishing"] # adjust to your classes
|
| 27 |
|
|
|
|
| 33 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 34 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 35 |
|
| 36 |
+
# Check if checkpoint exists locally, otherwise download from HF
|
| 37 |
+
if os.path.exists(CKPT_NAME):
|
| 38 |
+
print(f"📂 Found local checkpoint: {CKPT_NAME}")
|
| 39 |
+
ckpt_path = CKPT_NAME
|
| 40 |
+
else:
|
| 41 |
+
print(f"⬇️ Downloading checkpoint {CKPT_NAME} from HF Hub...")
|
| 42 |
+
try:
|
| 43 |
+
ckpt_path = hf_hub_download(repo_id=REPO_ID, filename=CKPT_NAME)
|
| 44 |
+
except Exception as e:
|
| 45 |
+
print(f"⚠️ Could not download from HF: {e}")
|
| 46 |
+
# Fallback to pytorch_model.bin if the new name fails (optional, but good for safety)
|
| 47 |
+
print("🔄 Trying fallback to pytorch_model.bin...")
|
| 48 |
+
ckpt_path = hf_hub_download(repo_id=REPO_ID, filename="pytorch_model.bin")
|
| 49 |
+
|
| 50 |
checkpoint = torch.load(ckpt_path, map_location=device)
|
| 51 |
|
| 52 |
# If you saved hyperparams in the checkpoint, use them:
|
| 53 |
+
if isinstance(checkpoint, dict):
|
| 54 |
+
model_args = checkpoint.get("model_args", {}) # e.g., {"lstm_hidden":256, "num_labels":2, ...}
|
| 55 |
+
else:
|
| 56 |
+
model_args = {}
|
| 57 |
+
model = DeBERTaLSTMClassifier(**model_args)
|
| 58 |
|
| 59 |
# Load weights
|
| 60 |
try:
|
| 61 |
+
state_dict = torch.load(ckpt_path, map_location=device)
|
| 62 |
+
|
| 63 |
+
# Xử lý nếu file lưu dạng checkpoint đầy đủ (có key "model_state_dict")
|
| 64 |
+
if "model_state_dict" in state_dict:
|
| 65 |
+
state_dict = state_dict["model_state_dict"]
|
| 66 |
+
|
| 67 |
+
model.load_state_dict(state_dict, strict=False)
|
| 68 |
+
|
| 69 |
+
# Kiểm tra layer attention
|
| 70 |
+
if hasattr(model, 'attention') and 'attention.weight' not in state_dict:
|
| 71 |
+
print("⚠️ Loaded model without attention layer, using newly initialized attention weights")
|
| 72 |
else:
|
| 73 |
+
print("✅ Load weights successfully!")
|
| 74 |
+
|
| 75 |
+
except Exception as e:
|
| 76 |
+
print(f"❌ Error when loading weights: {e}")
|
| 77 |
+
raise e
|
| 78 |
|
| 79 |
model.to(device).eval()
|
| 80 |
|
|
|
|
| 381 |
|
| 382 |
if fetched_content:
|
| 383 |
# Limit content length to avoid token overflow
|
| 384 |
+
truncated_content = fetched_content[:1500]
|
| 385 |
analysis_context = f"URL: {input_text}\n\nWebsite Content:\n{truncated_content}\n..."
|
| 386 |
print(f"✅ Successfully fetched {len(fetched_content)} chars from URL.")
|
| 387 |
else:
|