Update app.py
Browse files
app.py
CHANGED
|
@@ -87,21 +87,49 @@ def gradio_wrapper(inputs):
|
|
| 87 |
return decorated
|
| 88 |
|
| 89 |
# returns a list of models, assuming the models are placed under ./training/ or ./models/ or ./data/models/
|
| 90 |
-
def get_model_paths(
|
| 91 |
configs = []
|
| 92 |
|
| 93 |
for path in paths:
|
|
|
|
|
|
|
|
|
|
| 94 |
if not path.exists():
|
| 95 |
continue
|
| 96 |
|
| 97 |
for yaml in path.glob("**/*.yaml"):
|
| 98 |
if "/logs/" in str(yaml):
|
| 99 |
continue
|
|
|
|
|
|
|
| 100 |
configs.append( yaml )
|
| 101 |
|
| 102 |
for sft in path.glob("**/*.sft"):
|
| 103 |
if "/logs/" in str(sft):
|
| 104 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
configs.append( sft )
|
| 106 |
|
| 107 |
configs = [ str(p) for p in configs ]
|
|
@@ -115,10 +143,10 @@ def get_attentions():
|
|
| 115 |
return AVAILABLE_ATTENTIONS + ["auto"]
|
| 116 |
|
| 117 |
#@gradio_wrapper(inputs=layout["settings"]["inputs"].keys())
|
| 118 |
-
def load_model( config, device, dtype, attention ):
|
| 119 |
gr.Info(f"Loading: {config}")
|
| 120 |
try:
|
| 121 |
-
init_tts( config=Path(config), restart=True, device=device, dtype=dtype, attention=attention )
|
| 122 |
except Exception as e:
|
| 123 |
raise gr.Error(e)
|
| 124 |
gr.Info(f"Loaded model")
|
|
@@ -130,7 +158,7 @@ def get_languages():
|
|
| 130 |
return list(get_lang_symmap().keys()) + ["auto"]
|
| 131 |
|
| 132 |
def get_tasks():
|
| 133 |
-
return ["tts", "sr", "
|
| 134 |
|
| 135 |
#@gradio_wrapper(inputs=layout["dataset"]["inputs"].keys())
|
| 136 |
def load_sample( speaker ):
|
|
@@ -219,18 +247,20 @@ def do_inference_tts( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
|
|
| 219 |
parser.add_argument("--voice-convert", type=str, default=kwargs["voice-convert"])
|
| 220 |
parser.add_argument("--language", type=str, default=kwargs["language"])
|
| 221 |
parser.add_argument("--text-language", type=str, default=kwargs["text-language"])
|
|
|
|
|
|
|
| 222 |
parser.add_argument("--split-text-by", type=str, default=kwargs["split-text-by"])
|
| 223 |
parser.add_argument("--context-history", type=int, default=kwargs["context-history"])
|
| 224 |
parser.add_argument("--input-prompt-length", type=float, default=kwargs["input-prompt-length"])
|
| 225 |
-
parser.add_argument("--input-prompt-prefix", action='store_true', default=kwargs["input-prompt-prefix"])
|
| 226 |
parser.add_argument("--max-duration", type=int, default=int(kwargs["max-duration"]*cfg.dataset.frames_per_second))
|
| 227 |
-
parser.add_argument("--max-levels", type=int, default=kwargs["max-levels"])
|
| 228 |
parser.add_argument("--max-steps", type=int, default=kwargs["max-steps"])
|
| 229 |
parser.add_argument("--ar-temperature", type=float, default=kwargs["ar-temperature"])
|
| 230 |
parser.add_argument("--nar-temperature", type=float, default=kwargs["nar-temperature"])
|
| 231 |
parser.add_argument("--min-ar-temperature", type=float, default=kwargs["min-ar-temperature"])
|
| 232 |
parser.add_argument("--min-nar-temperature", type=float, default=kwargs["min-nar-temperature"])
|
| 233 |
-
parser.add_argument("--prefix-silence", type=float, default=kwargs["prefix-silence"])
|
| 234 |
parser.add_argument("--top-p", type=float, default=kwargs["top-p"])
|
| 235 |
parser.add_argument("--top-k", type=int, default=kwargs["top-k"])
|
| 236 |
parser.add_argument("--top-no", type=float, default=kwargs["top-no"])
|
|
@@ -238,6 +268,7 @@ def do_inference_tts( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
|
|
| 238 |
parser.add_argument("--repetition-penalty", type=float, default=kwargs["repetition-penalty"])
|
| 239 |
parser.add_argument("--repetition-penalty-decay", type=float, default=kwargs["repetition-penalty-decay"])
|
| 240 |
parser.add_argument("--length-penalty", type=float, default=kwargs["length-penalty"])
|
|
|
|
| 241 |
parser.add_argument("--beam-width", type=int, default=kwargs["beam-width"])
|
| 242 |
parser.add_argument("--mirostat-tau", type=float, default=kwargs["mirostat-tau"])
|
| 243 |
parser.add_argument("--mirostat-eta", type=float, default=kwargs["mirostat-eta"])
|
|
@@ -249,10 +280,16 @@ def do_inference_tts( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
|
|
| 249 |
parser.add_argument("--layer-skip-exit-layer", type=int, default=kwargs["layer-skip-exit-layer"])
|
| 250 |
parser.add_argument("--layer-skip-entropy-threshold", type=int, default=kwargs["layer-skip-entropy-threshold"])
|
| 251 |
parser.add_argument("--layer-skip-varentropy-threshold", type=int, default=kwargs["layer-skip-varentropy-threshold"])
|
|
|
|
| 252 |
parser.add_argument("--refine-on-stop", action="store_true")
|
| 253 |
parser.add_argument("--denoise-start", type=float, default=0.0)
|
| 254 |
parser.add_argument("--cfg-strength", type=float, default=kwargs['cfg-strength'])
|
| 255 |
parser.add_argument("--cfg-rescale", type=float, default=kwargs['cfg-rescale'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
args, unknown = parser.parse_known_args()
|
| 257 |
|
| 258 |
if is_windows:
|
|
@@ -274,6 +311,21 @@ def do_inference_tts( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
|
|
| 274 |
if kwargs.pop("refine-on-stop", False):
|
| 275 |
args.refine_on_stop = True
|
| 276 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
if args.split_text_by == "lines":
|
| 278 |
args.split_text_by = "\n"
|
| 279 |
elif args.split_text_by == "none":
|
|
@@ -289,30 +341,35 @@ def do_inference_tts( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
|
|
| 289 |
sampling_kwargs = dict(
|
| 290 |
split_text_by=args.split_text_by,
|
| 291 |
context_history=args.context_history,
|
|
|
|
| 292 |
voice_convert=args.voice_convert,
|
| 293 |
max_steps=args.max_steps,
|
| 294 |
-
max_levels=args.max_levels,
|
| 295 |
max_duration=args.max_duration,
|
| 296 |
ar_temperature=args.ar_temperature, nar_temperature=args.nar_temperature,
|
| 297 |
min_ar_temperature=args.min_ar_temperature, min_nar_temperature=args.min_nar_temperature,
|
| 298 |
top_p=args.top_p, top_k=args.top_k, min_p=args.min_p, top_no=args.top_no,
|
| 299 |
repetition_penalty=args.repetition_penalty, repetition_penalty_decay=args.repetition_penalty_decay,
|
| 300 |
length_penalty=args.length_penalty,
|
| 301 |
-
beam_width=args.beam_width,
|
| 302 |
-
mirostat_tau=args.mirostat_tau, mirostat_eta=args.mirostat_eta,
|
| 303 |
-
dry_multiplier=args.dry_multiplier, dry_base=args.dry_base, dry_allowed_length=args.dry_allowed_length,
|
| 304 |
-
entropix_sampling=args.entropix_sampling,
|
| 305 |
-
layer_skip=args.layer_skip,
|
| 306 |
-
layer_skip_exit_layer=args.layer_skip_exit_layer,
|
| 307 |
-
layer_skip_entropy_threshold=args.layer_skip_entropy_threshold,
|
| 308 |
-
layer_skip_varentropy_threshold=args.layer_skip_varentropy_threshold,
|
| 309 |
-
refine_on_stop=args.refine_on_stop,
|
| 310 |
denoise_start=args.denoise_start,
|
| 311 |
-
prefix_silence=args.prefix_silence,
|
| 312 |
-
input_prompt_prefix=args.input_prompt_prefix,
|
| 313 |
input_prompt_length=args.input_prompt_length,
|
| 314 |
cfg_strength=args.cfg_strength,
|
| 315 |
cfg_rescale=args.cfg_rescale,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
)
|
| 317 |
|
| 318 |
with timer("Inferenced in", callback=lambda msg: gr.Info( msg )) as t:
|
|
@@ -321,6 +378,7 @@ def do_inference_tts( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
|
|
| 321 |
language=args.language,
|
| 322 |
text_language=args.text_language,
|
| 323 |
task=args.task,
|
|
|
|
| 324 |
modality=args.modality.lower(),
|
| 325 |
references=args.references.split(";") if args.references is not None else [],
|
| 326 |
**sampling_kwargs,
|
|
@@ -416,6 +474,7 @@ def do_training( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
|
|
| 416 |
parser = argparse.ArgumentParser(allow_abbrev=False)
|
| 417 |
parser.add_argument("--yaml", type=Path, default=os.environ.get('VALLE_YAML', None)) # os environ so it can be specified in a HuggingFace Space too
|
| 418 |
parser.add_argument("--model", type=Path, default=os.environ.get('VALLE_MODEL', None)) # os environ so it can be specified in a HuggingFace Space too
|
|
|
|
| 419 |
parser.add_argument("--listen", default=None, help="Path for Gradio to listen on")
|
| 420 |
parser.add_argument("--share", action="store_true")
|
| 421 |
parser.add_argument("--render_markdown", action="store_true", default="VALLE_YAML" in os.environ)
|
|
@@ -469,6 +528,9 @@ with ui:
|
|
| 469 |
with gr.Row():
|
| 470 |
layout["inference_tts"]["inputs"]["split-text-by"] = gr.Dropdown(choices=["sentences", "lines"], label="Text Delimiter", info="How to split the text into utterances.", value="sentences")
|
| 471 |
layout["inference_tts"]["inputs"]["context-history"] = gr.Slider(value=0, minimum=0, maximum=4, step=1, label="(Rolling) Context History", info="How many prior lines to serve as the context/prefix (0 to disable).")
|
|
|
|
|
|
|
|
|
|
| 472 |
with gr.Tab("Sampler Settings"):
|
| 473 |
with gr.Row():
|
| 474 |
layout["inference_tts"]["inputs"]["ar-temperature"] = gr.Slider(value=1.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (AR/NAR-len)", info="Adjusts the probabilities in the AR/NAR-len. (0 to greedy* sample)")
|
|
@@ -486,7 +548,12 @@ with ui:
|
|
| 486 |
layout["inference_tts"]["inputs"]["repetition-penalty"] = gr.Slider(value=1.0, minimum=0.0, maximum=5.0, step=0.05, label="Repetition Penalty", info="Incurs a penalty to tokens based on how often they appear in a sequence.")
|
| 487 |
layout["inference_tts"]["inputs"]["repetition-penalty-decay"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty Length Decay", info="Modifies the reptition penalty based on how far back in time the token appeared in the sequence.")
|
| 488 |
layout["inference_tts"]["inputs"]["length-penalty"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Length Penalty", info="(AR only) Modifies the probability of a stop token based on the current length of the sequence.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 489 |
# These settings are pretty much not supported anyways
|
|
|
|
| 490 |
with gr.Tab("Experimental Settings", visible=cfg.experimental):
|
| 491 |
with gr.Row():
|
| 492 |
layout["inference_tts"]["inputs"]["max-levels"] = gr.Slider(value=7, minimum=0, maximum=7, step=1, label="Max NAR Levels", info="Limits how many steps to perform in the NAR pass.")
|
|
@@ -509,6 +576,7 @@ with ui:
|
|
| 509 |
layout["inference_tts"]["inputs"]["layer-skip-exit-layer"] = gr.Slider(value=11, minimum=0, maximum=11, step=1, label="Layer Skip Exit Layer", info="Maximum model layer to exit early from.")
|
| 510 |
layout["inference_tts"]["inputs"]["layer-skip-entropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Entropy Threshold", info="Entropy threshold for early-exit")
|
| 511 |
layout["inference_tts"]["inputs"]["layer-skip-varentropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Varentropy Threshold", info="Varentropy threshold for early-exit")
|
|
|
|
| 512 |
|
| 513 |
layout["inference_tts"]["buttons"]["inference"].click(
|
| 514 |
fn=do_inference_tts,
|
|
@@ -554,6 +622,7 @@ with ui:
|
|
| 554 |
layout["inference_stt"]["inputs"]["repetition-penalty"] = gr.Slider(value=1.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty", info="Incurs a penalty to tokens based on how often they appear in a sequence.")
|
| 555 |
layout["inference_stt"]["inputs"]["repetition-penalty-decay"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty Length Decay", info="Modifies the reptition penalty based on how far back in time the token appeared in the sequence.")
|
| 556 |
layout["inference_stt"]["inputs"]["length-penalty"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Length Penalty", info="(AR only) Modifies the probability of a stop token based on the current length of the sequence.")
|
|
|
|
| 557 |
with gr.Row():
|
| 558 |
layout["inference_stt"]["inputs"]["dynamic-sampling"] = gr.Checkbox(label="Dynamic Temperature", info="Dynamically adjusts the temperature based on the highest confident predicted token per sampling step.")
|
| 559 |
layout["inference_stt"]["inputs"]["mirostat-tau"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="Mirostat τ (Tau)", info="The \"surprise\" value when performing mirostat sampling. 0 to disable.")
|
|
@@ -562,6 +631,7 @@ with ui:
|
|
| 562 |
layout["inference_stt"]["inputs"]["dry-multiplier"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="DRY Multiplier", info="The multiplying factor for the DRY score penalty (0 to disable DRY sampling).")
|
| 563 |
layout["inference_stt"]["inputs"]["dry-base"] = gr.Slider(value=1.75, minimum=0.0, maximum=8.0, step=0.05, label="DRY Base", info="The base of the exponent in the DRY score penalty")
|
| 564 |
layout["inference_stt"]["inputs"]["dry-allowed-length"] = gr.Slider(value=2, minimum=0, maximum=75, step=1, label="Allowed Length", info="The maximimum length a token can be to perform DRY penalty with.")
|
|
|
|
| 565 |
|
| 566 |
layout["inference_stt"]["buttons"]["inference"].click(
|
| 567 |
fn=do_inference_stt,
|
|
@@ -609,8 +679,9 @@ with ui:
|
|
| 609 |
with gr.Column(scale=7):
|
| 610 |
with gr.Row():
|
| 611 |
layout["settings"]["inputs"]["models"] = gr.Dropdown(choices=get_model_paths(), value=args.yaml or args.model, label="Model", info="Model to load. Can load from a config YAML or the weights itself.")
|
| 612 |
-
layout["settings"]["inputs"]["
|
| 613 |
with gr.Row():
|
|
|
|
| 614 |
layout["settings"]["inputs"]["dtype"] = gr.Dropdown(choices=get_dtypes(), value="auto", label="Precision", info="Tensor type to load the model under.")
|
| 615 |
layout["settings"]["inputs"]["attentions"] = gr.Dropdown(choices=get_attentions(), value="auto", label="Attentions", info="Attention mechanism to utilize.")
|
| 616 |
|
|
|
|
| 87 |
return decorated
|
| 88 |
|
| 89 |
# returns a list of models, assuming the models are placed under ./training/ or ./models/ or ./data/models/
|
| 90 |
+
def get_model_paths(paths=["./training/", "./models/", "./data/models/"] ):
|
| 91 |
configs = []
|
| 92 |
|
| 93 |
for path in paths:
|
| 94 |
+
if not isinstance( path, Path ):
|
| 95 |
+
path = Path(path)
|
| 96 |
+
|
| 97 |
if not path.exists():
|
| 98 |
continue
|
| 99 |
|
| 100 |
for yaml in path.glob("**/*.yaml"):
|
| 101 |
if "/logs/" in str(yaml):
|
| 102 |
continue
|
| 103 |
+
if "lora" in str(yaml):
|
| 104 |
+
continue
|
| 105 |
configs.append( yaml )
|
| 106 |
|
| 107 |
for sft in path.glob("**/*.sft"):
|
| 108 |
if "/logs/" in str(sft):
|
| 109 |
continue
|
| 110 |
+
if "lora" in str(sft):
|
| 111 |
+
continue
|
| 112 |
+
configs.append( sft )
|
| 113 |
+
|
| 114 |
+
configs = [ str(p) for p in configs ]
|
| 115 |
+
|
| 116 |
+
return configs
|
| 117 |
+
|
| 118 |
+
def get_lora_paths(paths=["./training/", "./models/", "./data/models/"] ):
|
| 119 |
+
configs = []
|
| 120 |
+
|
| 121 |
+
for path in paths:
|
| 122 |
+
if not isinstance( path, Path ):
|
| 123 |
+
path = Path(path)
|
| 124 |
+
|
| 125 |
+
if not path.exists():
|
| 126 |
+
continue
|
| 127 |
+
|
| 128 |
+
for sft in path.glob("**/*.sft"):
|
| 129 |
+
if "/logs/" in str(sft):
|
| 130 |
+
continue
|
| 131 |
+
if "lora" not in str(sft):
|
| 132 |
+
continue
|
| 133 |
configs.append( sft )
|
| 134 |
|
| 135 |
configs = [ str(p) for p in configs ]
|
|
|
|
| 143 |
return AVAILABLE_ATTENTIONS + ["auto"]
|
| 144 |
|
| 145 |
#@gradio_wrapper(inputs=layout["settings"]["inputs"].keys())
|
| 146 |
+
def load_model( config, lora, device, dtype, attention ):
|
| 147 |
gr.Info(f"Loading: {config}")
|
| 148 |
try:
|
| 149 |
+
init_tts( config=Path(config), lora=Path(lora) if lora is not None else None, restart=True, device=device, dtype=dtype, attention=attention )
|
| 150 |
except Exception as e:
|
| 151 |
raise gr.Error(e)
|
| 152 |
gr.Info(f"Loaded model")
|
|
|
|
| 158 |
return list(get_lang_symmap().keys()) + ["auto"]
|
| 159 |
|
| 160 |
def get_tasks():
|
| 161 |
+
return ["tts", "sr", "ns", "vc"]
|
| 162 |
|
| 163 |
#@gradio_wrapper(inputs=layout["dataset"]["inputs"].keys())
|
| 164 |
def load_sample( speaker ):
|
|
|
|
| 247 |
parser.add_argument("--voice-convert", type=str, default=kwargs["voice-convert"])
|
| 248 |
parser.add_argument("--language", type=str, default=kwargs["language"])
|
| 249 |
parser.add_argument("--text-language", type=str, default=kwargs["text-language"])
|
| 250 |
+
parser.add_argument("--no-phonemize", action="store_true")
|
| 251 |
+
parser.add_argument("--play", action="store_true")
|
| 252 |
parser.add_argument("--split-text-by", type=str, default=kwargs["split-text-by"])
|
| 253 |
parser.add_argument("--context-history", type=int, default=kwargs["context-history"])
|
| 254 |
parser.add_argument("--input-prompt-length", type=float, default=kwargs["input-prompt-length"])
|
| 255 |
+
#parser.add_argument("--input-prompt-prefix", action='store_true', default=kwargs["input-prompt-prefix"])
|
| 256 |
parser.add_argument("--max-duration", type=int, default=int(kwargs["max-duration"]*cfg.dataset.frames_per_second))
|
| 257 |
+
#parser.add_argument("--max-levels", type=int, default=kwargs["max-levels"])
|
| 258 |
parser.add_argument("--max-steps", type=int, default=kwargs["max-steps"])
|
| 259 |
parser.add_argument("--ar-temperature", type=float, default=kwargs["ar-temperature"])
|
| 260 |
parser.add_argument("--nar-temperature", type=float, default=kwargs["nar-temperature"])
|
| 261 |
parser.add_argument("--min-ar-temperature", type=float, default=kwargs["min-ar-temperature"])
|
| 262 |
parser.add_argument("--min-nar-temperature", type=float, default=kwargs["min-nar-temperature"])
|
| 263 |
+
#parser.add_argument("--prefix-silence", type=float, default=kwargs["prefix-silence"])
|
| 264 |
parser.add_argument("--top-p", type=float, default=kwargs["top-p"])
|
| 265 |
parser.add_argument("--top-k", type=int, default=kwargs["top-k"])
|
| 266 |
parser.add_argument("--top-no", type=float, default=kwargs["top-no"])
|
|
|
|
| 268 |
parser.add_argument("--repetition-penalty", type=float, default=kwargs["repetition-penalty"])
|
| 269 |
parser.add_argument("--repetition-penalty-decay", type=float, default=kwargs["repetition-penalty-decay"])
|
| 270 |
parser.add_argument("--length-penalty", type=float, default=kwargs["length-penalty"])
|
| 271 |
+
"""
|
| 272 |
parser.add_argument("--beam-width", type=int, default=kwargs["beam-width"])
|
| 273 |
parser.add_argument("--mirostat-tau", type=float, default=kwargs["mirostat-tau"])
|
| 274 |
parser.add_argument("--mirostat-eta", type=float, default=kwargs["mirostat-eta"])
|
|
|
|
| 280 |
parser.add_argument("--layer-skip-exit-layer", type=int, default=kwargs["layer-skip-exit-layer"])
|
| 281 |
parser.add_argument("--layer-skip-entropy-threshold", type=int, default=kwargs["layer-skip-entropy-threshold"])
|
| 282 |
parser.add_argument("--layer-skip-varentropy-threshold", type=int, default=kwargs["layer-skip-varentropy-threshold"])
|
| 283 |
+
"""
|
| 284 |
parser.add_argument("--refine-on-stop", action="store_true")
|
| 285 |
parser.add_argument("--denoise-start", type=float, default=0.0)
|
| 286 |
parser.add_argument("--cfg-strength", type=float, default=kwargs['cfg-strength'])
|
| 287 |
parser.add_argument("--cfg-rescale", type=float, default=kwargs['cfg-rescale'])
|
| 288 |
+
|
| 289 |
+
parser.add_argument("--sampling-scores-masked-only", action="store_true")
|
| 290 |
+
parser.add_argument("--sampling-scores-flatten", action="store_true")
|
| 291 |
+
parser.add_argument("--sampling-scores-remask", action="store_true")
|
| 292 |
+
|
| 293 |
args, unknown = parser.parse_known_args()
|
| 294 |
|
| 295 |
if is_windows:
|
|
|
|
| 311 |
if kwargs.pop("refine-on-stop", False):
|
| 312 |
args.refine_on_stop = True
|
| 313 |
|
| 314 |
+
if kwargs.pop("no-phonemize", False):
|
| 315 |
+
args.no_phonemize = True
|
| 316 |
+
|
| 317 |
+
if kwargs.pop("play", False):
|
| 318 |
+
args.play = True
|
| 319 |
+
|
| 320 |
+
if kwargs.pop("sampling-scores-masked-only", False):
|
| 321 |
+
args.sampling_scores_masked_only = True
|
| 322 |
+
|
| 323 |
+
if kwargs.pop("sampling-scores-flatten", False):
|
| 324 |
+
args.sampling_scores_flatten = True
|
| 325 |
+
|
| 326 |
+
if kwargs.pop("sampling-scores-remask", False):
|
| 327 |
+
args.sampling_scores_remask = True
|
| 328 |
+
|
| 329 |
if args.split_text_by == "lines":
|
| 330 |
args.split_text_by = "\n"
|
| 331 |
elif args.split_text_by == "none":
|
|
|
|
| 341 |
sampling_kwargs = dict(
|
| 342 |
split_text_by=args.split_text_by,
|
| 343 |
context_history=args.context_history,
|
| 344 |
+
phonemize=not args.no_phonemize,
|
| 345 |
voice_convert=args.voice_convert,
|
| 346 |
max_steps=args.max_steps,
|
| 347 |
+
#max_levels=args.max_levels,
|
| 348 |
max_duration=args.max_duration,
|
| 349 |
ar_temperature=args.ar_temperature, nar_temperature=args.nar_temperature,
|
| 350 |
min_ar_temperature=args.min_ar_temperature, min_nar_temperature=args.min_nar_temperature,
|
| 351 |
top_p=args.top_p, top_k=args.top_k, min_p=args.min_p, top_no=args.top_no,
|
| 352 |
repetition_penalty=args.repetition_penalty, repetition_penalty_decay=args.repetition_penalty_decay,
|
| 353 |
length_penalty=args.length_penalty,
|
| 354 |
+
#beam_width=args.beam_width,
|
| 355 |
+
#mirostat_tau=args.mirostat_tau, mirostat_eta=args.mirostat_eta,
|
| 356 |
+
#dry_multiplier=args.dry_multiplier, dry_base=args.dry_base, dry_allowed_length=args.dry_allowed_length,
|
| 357 |
+
#entropix_sampling=args.entropix_sampling,
|
| 358 |
+
#layer_skip=args.layer_skip,
|
| 359 |
+
#layer_skip_exit_layer=args.layer_skip_exit_layer,
|
| 360 |
+
#layer_skip_entropy_threshold=args.layer_skip_entropy_threshold,
|
| 361 |
+
#layer_skip_varentropy_threshold=args.layer_skip_varentropy_threshold,
|
| 362 |
+
#refine_on_stop=args.refine_on_stop,
|
| 363 |
denoise_start=args.denoise_start,
|
| 364 |
+
#prefix_silence=args.prefix_silence,
|
| 365 |
+
#input_prompt_prefix=args.input_prompt_prefix,
|
| 366 |
input_prompt_length=args.input_prompt_length,
|
| 367 |
cfg_strength=args.cfg_strength,
|
| 368 |
cfg_rescale=args.cfg_rescale,
|
| 369 |
+
|
| 370 |
+
sampling_scores_masked_only=args.sampling_scores_masked_only,
|
| 371 |
+
sampling_scores_flatten=args.sampling_scores_flatten,
|
| 372 |
+
sampling_scores_remask=args.sampling_scores_remask,
|
| 373 |
)
|
| 374 |
|
| 375 |
with timer("Inferenced in", callback=lambda msg: gr.Info( msg )) as t:
|
|
|
|
| 378 |
language=args.language,
|
| 379 |
text_language=args.text_language,
|
| 380 |
task=args.task,
|
| 381 |
+
play=args.play,
|
| 382 |
modality=args.modality.lower(),
|
| 383 |
references=args.references.split(";") if args.references is not None else [],
|
| 384 |
**sampling_kwargs,
|
|
|
|
| 474 |
parser = argparse.ArgumentParser(allow_abbrev=False)
|
| 475 |
parser.add_argument("--yaml", type=Path, default=os.environ.get('VALLE_YAML', None)) # os environ so it can be specified in a HuggingFace Space too
|
| 476 |
parser.add_argument("--model", type=Path, default=os.environ.get('VALLE_MODEL', None)) # os environ so it can be specified in a HuggingFace Space too
|
| 477 |
+
parser.add_argument("--lora", type=Path, default=os.environ.get('VALLE_LORA', None)) # os environ so it can be specified in a HuggingFace Space too
|
| 478 |
parser.add_argument("--listen", default=None, help="Path for Gradio to listen on")
|
| 479 |
parser.add_argument("--share", action="store_true")
|
| 480 |
parser.add_argument("--render_markdown", action="store_true", default="VALLE_YAML" in os.environ)
|
|
|
|
| 528 |
with gr.Row():
|
| 529 |
layout["inference_tts"]["inputs"]["split-text-by"] = gr.Dropdown(choices=["sentences", "lines"], label="Text Delimiter", info="How to split the text into utterances.", value="sentences")
|
| 530 |
layout["inference_tts"]["inputs"]["context-history"] = gr.Slider(value=0, minimum=0, maximum=4, step=1, label="(Rolling) Context History", info="How many prior lines to serve as the context/prefix (0 to disable).")
|
| 531 |
+
with gr.Row():
|
| 532 |
+
layout["inference_tts"]["inputs"]["no-phonemize"] = gr.Checkbox(label="No Phonemize", info="Use raw text rather than phonemize the text as the input prompt.")
|
| 533 |
+
layout["inference_tts"]["inputs"]["play"] = gr.Checkbox(label="Auto Play", info="Auto play on generation (using sounddevice).")
|
| 534 |
with gr.Tab("Sampler Settings"):
|
| 535 |
with gr.Row():
|
| 536 |
layout["inference_tts"]["inputs"]["ar-temperature"] = gr.Slider(value=1.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (AR/NAR-len)", info="Adjusts the probabilities in the AR/NAR-len. (0 to greedy* sample)")
|
|
|
|
| 548 |
layout["inference_tts"]["inputs"]["repetition-penalty"] = gr.Slider(value=1.0, minimum=0.0, maximum=5.0, step=0.05, label="Repetition Penalty", info="Incurs a penalty to tokens based on how often they appear in a sequence.")
|
| 549 |
layout["inference_tts"]["inputs"]["repetition-penalty-decay"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty Length Decay", info="Modifies the reptition penalty based on how far back in time the token appeared in the sequence.")
|
| 550 |
layout["inference_tts"]["inputs"]["length-penalty"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Length Penalty", info="(AR only) Modifies the probability of a stop token based on the current length of the sequence.")
|
| 551 |
+
with gr.Row():
|
| 552 |
+
layout["inference_tts"]["inputs"]["sampling-scores-masked-only"] = gr.Checkbox(label="Sampled Scores: Masked Only", info="(NAR-len only) Update scores for newly generated tokens only")
|
| 553 |
+
layout["inference_tts"]["inputs"]["sampling-scores-flattened"] = gr.Checkbox(label="Sampled Scores: Flattened", info="(NAR-len only) Flattens the scores for all codebook levels")
|
| 554 |
+
layout["inference_tts"]["inputs"]["sampling-scores-remask"] = gr.Checkbox(label="Sampled Scores: Remask", info="(NAR-len only) Remasks P%% of existing tokens randomly after each step.")
|
| 555 |
# These settings are pretty much not supported anyways
|
| 556 |
+
"""
|
| 557 |
with gr.Tab("Experimental Settings", visible=cfg.experimental):
|
| 558 |
with gr.Row():
|
| 559 |
layout["inference_tts"]["inputs"]["max-levels"] = gr.Slider(value=7, minimum=0, maximum=7, step=1, label="Max NAR Levels", info="Limits how many steps to perform in the NAR pass.")
|
|
|
|
| 576 |
layout["inference_tts"]["inputs"]["layer-skip-exit-layer"] = gr.Slider(value=11, minimum=0, maximum=11, step=1, label="Layer Skip Exit Layer", info="Maximum model layer to exit early from.")
|
| 577 |
layout["inference_tts"]["inputs"]["layer-skip-entropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Entropy Threshold", info="Entropy threshold for early-exit")
|
| 578 |
layout["inference_tts"]["inputs"]["layer-skip-varentropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Varentropy Threshold", info="Varentropy threshold for early-exit")
|
| 579 |
+
"""
|
| 580 |
|
| 581 |
layout["inference_tts"]["buttons"]["inference"].click(
|
| 582 |
fn=do_inference_tts,
|
|
|
|
| 622 |
layout["inference_stt"]["inputs"]["repetition-penalty"] = gr.Slider(value=1.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty", info="Incurs a penalty to tokens based on how often they appear in a sequence.")
|
| 623 |
layout["inference_stt"]["inputs"]["repetition-penalty-decay"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty Length Decay", info="Modifies the reptition penalty based on how far back in time the token appeared in the sequence.")
|
| 624 |
layout["inference_stt"]["inputs"]["length-penalty"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Length Penalty", info="(AR only) Modifies the probability of a stop token based on the current length of the sequence.")
|
| 625 |
+
"""
|
| 626 |
with gr.Row():
|
| 627 |
layout["inference_stt"]["inputs"]["dynamic-sampling"] = gr.Checkbox(label="Dynamic Temperature", info="Dynamically adjusts the temperature based on the highest confident predicted token per sampling step.")
|
| 628 |
layout["inference_stt"]["inputs"]["mirostat-tau"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="Mirostat τ (Tau)", info="The \"surprise\" value when performing mirostat sampling. 0 to disable.")
|
|
|
|
| 631 |
layout["inference_stt"]["inputs"]["dry-multiplier"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="DRY Multiplier", info="The multiplying factor for the DRY score penalty (0 to disable DRY sampling).")
|
| 632 |
layout["inference_stt"]["inputs"]["dry-base"] = gr.Slider(value=1.75, minimum=0.0, maximum=8.0, step=0.05, label="DRY Base", info="The base of the exponent in the DRY score penalty")
|
| 633 |
layout["inference_stt"]["inputs"]["dry-allowed-length"] = gr.Slider(value=2, minimum=0, maximum=75, step=1, label="Allowed Length", info="The maximimum length a token can be to perform DRY penalty with.")
|
| 634 |
+
"""
|
| 635 |
|
| 636 |
layout["inference_stt"]["buttons"]["inference"].click(
|
| 637 |
fn=do_inference_stt,
|
|
|
|
| 679 |
with gr.Column(scale=7):
|
| 680 |
with gr.Row():
|
| 681 |
layout["settings"]["inputs"]["models"] = gr.Dropdown(choices=get_model_paths(), value=args.yaml or args.model, label="Model", info="Model to load. Can load from a config YAML or the weights itself.")
|
| 682 |
+
layout["settings"]["inputs"]["loras"] = gr.Dropdown(choices=get_lora_paths(), value=args.yaml or args.lora, label="LoRA", info="LoRA to load. Can load from a config YAML or the weights itself.")
|
| 683 |
with gr.Row():
|
| 684 |
+
layout["settings"]["inputs"]["device"] = gr.Dropdown(choices=get_devices(), value="cuda:0", label="Device", info="Device to load the weights onto.")
|
| 685 |
layout["settings"]["inputs"]["dtype"] = gr.Dropdown(choices=get_dtypes(), value="auto", label="Precision", info="Tensor type to load the model under.")
|
| 686 |
layout["settings"]["inputs"]["attentions"] = gr.Dropdown(choices=get_attentions(), value="auto", label="Attentions", info="Attention mechanism to utilize.")
|
| 687 |
|