Spaces:
Build error
Build error
auth
Browse files
app.py
CHANGED
|
@@ -4,11 +4,8 @@ import gradio as gr
|
|
| 4 |
from tools import create_agent
|
| 5 |
from langchain_core.messages import RemoveMessage
|
| 6 |
from langchain_core.messages import trim_messages
|
| 7 |
-
load_dotenv()
|
| 8 |
|
| 9 |
# Global params
|
| 10 |
-
AUTH_ID = os.environ.get("AUTH_ID")
|
| 11 |
-
AUTH_PASS = os.environ.get("AUTH_PASS")
|
| 12 |
AGENT = create_agent()
|
| 13 |
theme = gr.themes.Default(primary_hue="red", secondary_hue="red")
|
| 14 |
default_msg = "Bonjour ! Je suis là pour répondre à vos questions sur l'actuariat. Comment puis-je vous aider aujourd'hui ?"
|
|
@@ -83,4 +80,7 @@ with gr.Blocks(theme=theme, js=js_func, title="Dataltist", fill_height=True) as
|
|
| 83 |
iface.unload(delete_agent)
|
| 84 |
|
| 85 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
| 86 |
iface.launch(auth=(AUTH_ID, AUTH_PASS))
|
|
|
|
| 4 |
from tools import create_agent
|
| 5 |
from langchain_core.messages import RemoveMessage
|
| 6 |
from langchain_core.messages import trim_messages
|
|
|
|
| 7 |
|
| 8 |
# Global params
|
|
|
|
|
|
|
| 9 |
AGENT = create_agent()
|
| 10 |
theme = gr.themes.Default(primary_hue="red", secondary_hue="red")
|
| 11 |
default_msg = "Bonjour ! Je suis là pour répondre à vos questions sur l'actuariat. Comment puis-je vous aider aujourd'hui ?"
|
|
|
|
| 80 |
iface.unload(delete_agent)
|
| 81 |
|
| 82 |
if __name__ == "__main__":
|
| 83 |
+
load_dotenv()
|
| 84 |
+
AUTH_ID = os.environ.get("AUTH_ID")
|
| 85 |
+
AUTH_PASS = os.environ.get("AUTH_PASS")
|
| 86 |
iface.launch(auth=(AUTH_ID, AUTH_PASS))
|
tools.py
CHANGED
|
@@ -41,13 +41,13 @@ memoires_ds = load_dataset("eliot-hub/memoires_vec_800", split="data", token=HF_
|
|
| 41 |
batched_ds = memoires_ds.batch(batch_size=41000)
|
| 42 |
client = chromadb.Client()
|
| 43 |
collection = client.get_or_create_collection(name="embeddings_mxbai")
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
print(f"Collection complete: {collection.count()}")
|
| 52 |
del memoires_ds, batched_ds
|
| 53 |
|
|
|
|
| 41 |
batched_ds = memoires_ds.batch(batch_size=41000)
|
| 42 |
client = chromadb.Client()
|
| 43 |
collection = client.get_or_create_collection(name="embeddings_mxbai")
|
| 44 |
+
for batch in tqdm(batched_ds, desc="Processing dataset batches"):
|
| 45 |
+
collection.add(
|
| 46 |
+
ids=batch["id"],
|
| 47 |
+
metadatas=batch["metadata"],
|
| 48 |
+
documents=batch["document"],
|
| 49 |
+
embeddings=batch["embedding"],
|
| 50 |
+
)
|
| 51 |
print(f"Collection complete: {collection.count()}")
|
| 52 |
del memoires_ds, batched_ds
|
| 53 |
|