Spaces:
Build error
Build error
Delete hf_to_chroma_ds.py
Browse files- hf_to_chroma_ds.py +0 -154
hf_to_chroma_ds.py
DELETED
|
@@ -1,154 +0,0 @@
|
|
| 1 |
-
# imports
|
| 2 |
-
from abc import ABC, abstractmethod
|
| 3 |
-
from typing import Optional, Union, Sequence, Dict, Mapping, List, Any
|
| 4 |
-
from typing_extensions import TypedDict
|
| 5 |
-
from chroma_datasets.types import AddEmbedding, Datapoint
|
| 6 |
-
from chroma_datasets.utils import load_huggingface_dataset, to_chroma_schema
|
| 7 |
-
from chromadb.utils import embedding_functions
|
| 8 |
-
import os
|
| 9 |
-
from dotenv import load_dotenv
|
| 10 |
-
|
| 11 |
-
HF_API_KEY = os.environ.get("HF_API_KEY")
|
| 12 |
-
|
| 13 |
-
ef_instruction_dict = {
|
| 14 |
-
"HuggingFaceEmbeddingFunction": """
|
| 15 |
-
from chromadb.utils import embedding_functions
|
| 16 |
-
hf_ef = embedding_functions.huggingface_embedding_function.HuggingFaceEmbeddingFunction(api_key={HF_API_KEY}, model_name="mixedbread-ai/mxbai-embed-large-v1")
|
| 17 |
-
|
| 18 |
-
"""
|
| 19 |
-
}
|
| 20 |
-
|
| 21 |
-
class Dataset(ABC):
|
| 22 |
-
"""
|
| 23 |
-
Abstract class for a dataset
|
| 24 |
-
|
| 25 |
-
All datasets should inherit from this class
|
| 26 |
-
|
| 27 |
-
Properties:
|
| 28 |
-
hf_data: the raw data from huggingface
|
| 29 |
-
embedding_function: the embedding function used to generate the embeddings
|
| 30 |
-
embeddingFunctionInstructions: tell the user how to set up the embedding function
|
| 31 |
-
"""
|
| 32 |
-
hf_dataset_name: str
|
| 33 |
-
hf_data: Any
|
| 34 |
-
embedding_function: str
|
| 35 |
-
embedding_function_instructions: str
|
| 36 |
-
|
| 37 |
-
@classmethod
|
| 38 |
-
def load_data(cls):
|
| 39 |
-
cls.hf_data = load_huggingface_dataset(
|
| 40 |
-
cls.hf_dataset_name,
|
| 41 |
-
split_name="data"
|
| 42 |
-
)
|
| 43 |
-
|
| 44 |
-
@classmethod
|
| 45 |
-
def raw_text(cls) -> str:
|
| 46 |
-
if cls.hf_data is None:
|
| 47 |
-
cls.load_data()
|
| 48 |
-
return "\n".join(cls.hf_data["document"])
|
| 49 |
-
|
| 50 |
-
@classmethod
|
| 51 |
-
def chunked(cls) -> List[Datapoint]:
|
| 52 |
-
if cls.hf_data is None:
|
| 53 |
-
cls.load_data()
|
| 54 |
-
return cls.hf_data
|
| 55 |
-
|
| 56 |
-
@classmethod
|
| 57 |
-
def to_chroma(cls) -> AddEmbedding:
|
| 58 |
-
return to_chroma_schema(cls.chunked())
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
class Memoires_DS(Dataset):
|
| 62 |
-
"""
|
| 63 |
-
"""
|
| 64 |
-
hf_data = None
|
| 65 |
-
hf_dataset_name = "eliot-hub/memoires_vec_800"
|
| 66 |
-
embedding_function = "HuggingFaceEmbeddingFunction"
|
| 67 |
-
embedding_function_instructions = ef_instruction_dict[embedding_function]
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
def import_into_chroma(chroma_client, dataset, collection_name=None, embedding_function=None, batch_size=5000):
|
| 73 |
-
"""
|
| 74 |
-
Imports a dataset into Chroma in batches.
|
| 75 |
-
|
| 76 |
-
Args:
|
| 77 |
-
chroma_client (ChromaClient): The ChromaClient to use.
|
| 78 |
-
collection_name (str): The name of the collection to load the dataset into.
|
| 79 |
-
dataset (AddEmbedding): The dataset to load.
|
| 80 |
-
embedding_function (Optional[Callable[[str], np.ndarray]]): A function that takes a string and returns an embedding.
|
| 81 |
-
batch_size (int): The size of each batch to load.
|
| 82 |
-
"""
|
| 83 |
-
# if chromadb is not installed, raise an error
|
| 84 |
-
try:
|
| 85 |
-
import chromadb
|
| 86 |
-
from chromadb.utils import embedding_functions
|
| 87 |
-
except ImportError:
|
| 88 |
-
raise ImportError("Please install chromadb to use this function. `pip install chromadb`")
|
| 89 |
-
|
| 90 |
-
ef = None
|
| 91 |
-
|
| 92 |
-
if dataset.embedding_function is not None:
|
| 93 |
-
if embedding_function is None:
|
| 94 |
-
error_msg = "See documentation"
|
| 95 |
-
if dataset.embedding_function_instructions is not None:
|
| 96 |
-
error_msg = dataset.embedding_function_instructions
|
| 97 |
-
|
| 98 |
-
raise ValueError(f"""
|
| 99 |
-
Dataset requires embedding function: {dataset.embedding_function}.
|
| 100 |
-
{error_msg}
|
| 101 |
-
""")
|
| 102 |
-
|
| 103 |
-
if embedding_function.__class__.__name__ != dataset.embedding_function:
|
| 104 |
-
raise ValueError(f"Please use {dataset.embedding_function} as the embedding function for this dataset. You passed {embedding_function.__class__.__name__}")
|
| 105 |
-
|
| 106 |
-
if embedding_function is not None:
|
| 107 |
-
ef = embedding_function
|
| 108 |
-
|
| 109 |
-
# if collection_name is None, get the name from the dataset type
|
| 110 |
-
if collection_name is None:
|
| 111 |
-
collection_name = dataset.__name__
|
| 112 |
-
|
| 113 |
-
if ef is None:
|
| 114 |
-
ef = embedding_functions.DefaultEmbeddingFunction()
|
| 115 |
-
|
| 116 |
-
print("########### Init collection ###########")
|
| 117 |
-
collection = chroma_client.create_collection(
|
| 118 |
-
collection_name,
|
| 119 |
-
embedding_function=ef
|
| 120 |
-
)
|
| 121 |
-
|
| 122 |
-
# Retrieve the mapped data
|
| 123 |
-
print("########### Init to_chroma ###########")
|
| 124 |
-
mapped_data = dataset.to_chroma()
|
| 125 |
-
del dataset
|
| 126 |
-
|
| 127 |
-
# Split the data into batches and add them to the collection
|
| 128 |
-
def chunk_data(data, size):
|
| 129 |
-
"""Helper function to split data into batches."""
|
| 130 |
-
for i in range(0, len(data), size):
|
| 131 |
-
yield data[i:i+size]
|
| 132 |
-
|
| 133 |
-
print("########### Chunking ###########")
|
| 134 |
-
ids_batches = list(chunk_data(mapped_data["ids"], batch_size))
|
| 135 |
-
metadatas_batches = list(chunk_data(mapped_data["metadatas"], batch_size))
|
| 136 |
-
documents_batches = list(chunk_data(mapped_data["documents"], batch_size))
|
| 137 |
-
embeddings_batches = list(chunk_data(mapped_data["embeddings"], batch_size))
|
| 138 |
-
|
| 139 |
-
total_docs = len(mapped_data["ids"])
|
| 140 |
-
|
| 141 |
-
print("########### Iterating batches ###########")
|
| 142 |
-
for i, (ids, metadatas, documents, embeddings) in enumerate(zip(ids_batches, metadatas_batches, documents_batches, embeddings_batches)):
|
| 143 |
-
collection.add(
|
| 144 |
-
ids=ids,
|
| 145 |
-
metadatas=metadatas,
|
| 146 |
-
documents=documents,
|
| 147 |
-
embeddings=embeddings,
|
| 148 |
-
)
|
| 149 |
-
print(f"Batch {i+1}/{len(ids_batches)}: Loaded {len(ids)} documents.")
|
| 150 |
-
|
| 151 |
-
print(f"Successfully loaded {total_docs} documents into the collection named: {collection_name}")
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
return collection
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|