Spaces:
Running
on
Zero
Running
on
Zero
aknapitsch user
commited on
Commit
·
3d74194
1
Parent(s):
6e553ac
fallback for from_pretrained model loading
Browse files
app.py
CHANGED
|
@@ -30,6 +30,7 @@ from hf_utils.css_and_html import (
|
|
| 30 |
get_header_html,
|
| 31 |
)
|
| 32 |
from hf_utils.visual_util import predictions_to_glb
|
|
|
|
| 33 |
from mapanything.utils.geometry import depthmap_to_world_frame, points_to_normals
|
| 34 |
from mapanything.utils.image import load_images, rgb
|
| 35 |
|
|
@@ -149,68 +150,78 @@ def run_model(target_dir, model_placeholder, apply_mask=True, mask_edges=True):
|
|
| 149 |
high_level_config["path"], overrides=high_level_config["config_overrides"]
|
| 150 |
)
|
| 151 |
|
| 152 |
-
|
| 153 |
-
# Create model from local configuration instead of using from_pretrained
|
| 154 |
-
from mapanything.models import init_model
|
| 155 |
-
|
| 156 |
-
model = init_model(
|
| 157 |
-
model_str=cfg.model.model_str,
|
| 158 |
-
model_config=cfg.model.model_config,
|
| 159 |
-
torch_hub_force_reload=high_level_config.get(
|
| 160 |
-
"torch_hub_force_reload", False
|
| 161 |
-
),
|
| 162 |
-
)
|
| 163 |
-
|
| 164 |
-
# Load the pretrained weights from HuggingFace Hub
|
| 165 |
try:
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
-
#
|
| 169 |
try:
|
| 170 |
-
|
| 171 |
-
repo_id=high_level_config["hf_model_name"], token=load_hf_token()
|
| 172 |
-
)
|
| 173 |
-
print(f"Available files in repository: {repo_files}")
|
| 174 |
-
|
| 175 |
-
checkpoint_filename = "model.safetensors"
|
| 176 |
|
| 177 |
-
#
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
|
| 184 |
-
|
| 185 |
-
print("start loading checkpoint")
|
| 186 |
-
if checkpoint_filename.endswith(".safetensors"):
|
| 187 |
-
from safetensors.torch import load_file
|
| 188 |
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
|
|
|
| 193 |
)
|
| 194 |
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
model.load_state_dict(checkpoint["state_dict"])
|
| 200 |
-
else:
|
| 201 |
-
model.load_state_dict(checkpoint)
|
| 202 |
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
model = model.to(device)
|
| 216 |
|
|
|
|
| 30 |
get_header_html,
|
| 31 |
)
|
| 32 |
from hf_utils.visual_util import predictions_to_glb
|
| 33 |
+
from mapanything.models import MapAnything
|
| 34 |
from mapanything.utils.geometry import depthmap_to_world_frame, points_to_normals
|
| 35 |
from mapanything.utils.image import load_images, rgb
|
| 36 |
|
|
|
|
| 150 |
high_level_config["path"], overrides=high_level_config["config_overrides"]
|
| 151 |
)
|
| 152 |
|
| 153 |
+
# Try using from_pretrained first
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
try:
|
| 155 |
+
print("Loading MapAnything model from_pretrained...")
|
| 156 |
+
model = MapAnything.from_pretrained(high_level_config["hf_model_name"]).to(
|
| 157 |
+
device
|
| 158 |
+
)
|
| 159 |
+
print("Loading MapAnything model from_pretrained succeeded...")
|
| 160 |
+
except Exception as e:
|
| 161 |
+
print(f"from_pretrained failed: {e}")
|
| 162 |
+
print("Falling back to local configuration approach...")
|
| 163 |
+
|
| 164 |
+
# Create model from local configuration instead of using from_pretrained
|
| 165 |
+
from mapanything.models import init_model
|
| 166 |
+
|
| 167 |
+
model = init_model(
|
| 168 |
+
model_str=cfg.model.model_str,
|
| 169 |
+
model_config=cfg.model.model_config,
|
| 170 |
+
torch_hub_force_reload=high_level_config.get(
|
| 171 |
+
"torch_hub_force_reload", False
|
| 172 |
+
),
|
| 173 |
+
)
|
| 174 |
|
| 175 |
+
# Load the pretrained weights from HuggingFace Hub
|
| 176 |
try:
|
| 177 |
+
from huggingface_hub import hf_hub_download, list_repo_files
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
+
# First, let's see what files are available in the repository
|
| 180 |
+
try:
|
| 181 |
+
repo_files = list_repo_files(
|
| 182 |
+
repo_id=high_level_config["hf_model_name"], token=load_hf_token()
|
| 183 |
+
)
|
| 184 |
+
print(f"Available files in repository: {repo_files}")
|
| 185 |
|
| 186 |
+
checkpoint_filename = "model.safetensors"
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
+
# Download the model weights
|
| 189 |
+
checkpoint_path = hf_hub_download(
|
| 190 |
+
repo_id=high_level_config["hf_model_name"],
|
| 191 |
+
filename=checkpoint_filename,
|
| 192 |
+
token=load_hf_token(),
|
| 193 |
)
|
| 194 |
|
| 195 |
+
# Load the weights
|
| 196 |
+
print("start loading checkpoint")
|
| 197 |
+
if checkpoint_filename.endswith(".safetensors"):
|
| 198 |
+
from safetensors.torch import load_file
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
+
checkpoint = load_file(checkpoint_path)
|
| 201 |
+
else:
|
| 202 |
+
checkpoint = torch.load(
|
| 203 |
+
checkpoint_path, map_location="cpu", weights_only=True
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
print("start loading state_dict")
|
| 207 |
+
if "model" in checkpoint:
|
| 208 |
+
model.load_state_dict(checkpoint["model"])
|
| 209 |
+
elif "state_dict" in checkpoint:
|
| 210 |
+
model.load_state_dict(checkpoint["state_dict"])
|
| 211 |
+
else:
|
| 212 |
+
model.load_state_dict(checkpoint)
|
| 213 |
|
| 214 |
+
print(
|
| 215 |
+
f"Successfully loaded pretrained weights from HuggingFace Hub ({checkpoint_filename})"
|
| 216 |
+
)
|
| 217 |
|
| 218 |
+
except Exception as inner_e:
|
| 219 |
+
print(f"Error listing repository files or loading weights: {inner_e}")
|
| 220 |
+
raise inner_e
|
| 221 |
+
|
| 222 |
+
except Exception as e:
|
| 223 |
+
print(f"Warning: Could not load pretrained weights: {e}")
|
| 224 |
+
print("Proceeding with randomly initialized model...")
|
| 225 |
|
| 226 |
model = model.to(device)
|
| 227 |
|