nkeetha user commited on
Commit
9b4efbe
·
1 Parent(s): 7111539

MapAnything V1.1

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. configs/dataset/bedlam_wai/default.yaml +0 -3
  2. configs/dataset/bedlam_wai/train/default.yaml +0 -26
  3. configs/dataset/bedlam_wai/val/default.yaml +0 -26
  4. configs/dataset/{benchmark_518_snpp_tav2.yaml → benchmark_504_eth3d_snpp_tav2.yaml} +6 -3
  5. configs/dataset/benchmark_512_snpp_tav2.yaml +0 -17
  6. configs/dataset/bmvs_518_many_ar_48ipg_8g.yaml +23 -0
  7. configs/dataset/default.yaml +0 -6
  8. configs/dataset/dtu_wai/default.yaml +0 -2
  9. configs/dataset/dtu_wai/test/default.yaml +0 -22
  10. configs/dataset/gta_sfm_wai/default.yaml +0 -3
  11. configs/dataset/gta_sfm_wai/train/default.yaml +0 -26
  12. configs/dataset/gta_sfm_wai/val/default.yaml +0 -26
  13. configs/dataset/matrixcity_wai/default.yaml +0 -3
  14. configs/dataset/matrixcity_wai/train/default.yaml +0 -26
  15. configs/dataset/matrixcity_wai/val/default.yaml +0 -26
  16. configs/dataset/{megatrain_12d_518_many_ar_24ipg_16g.yaml → megatrain_13d_518_many_ar_24ipg_8g.yaml} +15 -12
  17. configs/dataset/{megatrain_11d_se_518_many_ar_48ipg_64g.yaml → megatrain_13d_518_many_ar_36ipg_64g.yaml} +17 -11
  18. configs/dataset/megatrain_13d_518_many_ar_48ipg_8g_mono.yaml +59 -0
  19. configs/dataset/megatrain_6d_518_many_ar_36ipg_64g.yaml +38 -0
  20. configs/dataset/structured3d_wai/default.yaml +0 -3
  21. configs/dataset/structured3d_wai/train/default.yaml +0 -26
  22. configs/dataset/structured3d_wai/val/default.yaml +0 -26
  23. configs/dataset/xrooms_wai/default.yaml +0 -3
  24. configs/dataset/xrooms_wai/train/default.yaml +0 -26
  25. configs/dataset/xrooms_wai/val/default.yaml +0 -26
  26. configs/loss/moge2_loss.yaml +4 -0
  27. configs/loss/overall_loss_highpm_plus_rel_pose.yaml +4 -0
  28. configs/loss/overall_loss_highpm_plus_rel_pose_no_conf.yaml +4 -0
  29. configs/loss/overall_loss_highpm_rel_pose_no_ref_view.yaml +4 -0
  30. configs/loss/pi3_loss.yaml +4 -0
  31. configs/machine/aws.yaml +7 -5
  32. configs/machine/default.yaml +2 -0
  33. configs/machine/psc.yaml +5 -3
  34. configs/machine/psc_yuchen.yaml +0 -13
  35. configs/machine/xri_dgx.yaml +4 -2
  36. configs/model/da3.yaml +13 -0
  37. configs/model/da3_nested.yaml +13 -0
  38. configs/model/encoder/dinov2_giant_24_layers.yaml +18 -0
  39. configs/model/info_sharing/aat_ifr_16_layers_dinov2_vitg_init.yaml +33 -0
  40. configs/model/info_sharing/aat_ifr_16_layers_vitg_dim.yaml +31 -0
  41. configs/model/mapanything.yaml +4 -2
  42. configs/model/{mapanything_large_inference.yaml → mapanything_dino_init.yaml} +4 -2
  43. configs/model/mapanything_inference.yaml +0 -18
  44. configs/model/{mapanything_large.yaml → mapanything_v1.yaml} +1 -1
  45. configs/rmvd_benchmark.yaml +1 -1
  46. configs/train_params/moge2_finetune.yaml +6 -0
  47. configs/train_params/pi3_finetune.yaml +16 -0
  48. configs/train_params/vggt_finetune.yaml +1 -1
  49. mapanything/datasets/__init__.py +5 -6
  50. mapanything/datasets/base/base_dataset.py +7 -2
configs/dataset/bedlam_wai/default.yaml DELETED
@@ -1,3 +0,0 @@
1
- defaults:
2
- - train: default
3
- - val: default
 
 
 
 
configs/dataset/bedlam_wai/train/default.yaml DELETED
@@ -1,26 +0,0 @@
1
- dataset_str:
2
- "BedlamWAI(
3
- split='${dataset.bedlam_wai.train.split}',
4
- resolution=${dataset.bedlam_wai.train.dataset_resolution},
5
- principal_point_centered=${dataset.bedlam_wai.train.principal_point_centered},
6
- aug_crop=${dataset.bedlam_wai.train.aug_crop},
7
- transform='${dataset.bedlam_wai.train.transform}',
8
- data_norm_type='${dataset.bedlam_wai.train.data_norm_type}',
9
- ROOT='${dataset.bedlam_wai.train.ROOT}',
10
- dataset_metadata_dir='${dataset.bedlam_wai.train.dataset_metadata_dir}',
11
- overfit_num_sets=${dataset.bedlam_wai.train.overfit_num_sets},
12
- variable_num_views=${dataset.bedlam_wai.train.variable_num_views},
13
- num_views=${dataset.bedlam_wai.train.num_views},
14
- covisibility_thres=${dataset.bedlam_wai.train.covisibility_thres})"
15
- split: 'train'
16
- dataset_resolution: ${dataset.resolution_train}
17
- principal_point_centered: ${dataset.principal_point_centered}
18
- aug_crop: 16
19
- transform: 'colorjitter+grayscale+gaublur'
20
- data_norm_type: ${model.data_norm_type}
21
- ROOT: ${root_data_dir}/bedlam
22
- dataset_metadata_dir: ${mapanything_dataset_metadata_dir}
23
- overfit_num_sets: null
24
- variable_num_views: ${dataset.train.variable_num_views}
25
- num_views: ${dataset.num_views}
26
- covisibility_thres: 0.25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/dataset/bedlam_wai/val/default.yaml DELETED
@@ -1,26 +0,0 @@
1
- dataset_str:
2
- "BedlamWAI(
3
- split='${dataset.bedlam_wai.val.split}',
4
- resolution=${dataset.bedlam_wai.val.dataset_resolution},
5
- principal_point_centered=${dataset.bedlam_wai.val.principal_point_centered},
6
- seed=${dataset.bedlam_wai.val.seed},
7
- transform='${dataset.bedlam_wai.val.transform}',
8
- data_norm_type='${dataset.bedlam_wai.val.data_norm_type}',
9
- ROOT='${dataset.bedlam_wai.val.ROOT}',
10
- dataset_metadata_dir='${dataset.bedlam_wai.val.dataset_metadata_dir}',
11
- overfit_num_sets=${dataset.bedlam_wai.val.overfit_num_sets},
12
- variable_num_views=${dataset.bedlam_wai.val.variable_num_views},
13
- num_views=${dataset.bedlam_wai.val.num_views},
14
- covisibility_thres=${dataset.bedlam_wai.val.covisibility_thres})"
15
- split: 'val'
16
- dataset_resolution: ${dataset.resolution_val_bedlam}
17
- principal_point_centered: ${dataset.principal_point_centered}
18
- seed: 777
19
- transform: 'imgnorm'
20
- data_norm_type: ${model.data_norm_type}
21
- ROOT: ${root_data_dir}/bedlam
22
- dataset_metadata_dir: ${mapanything_dataset_metadata_dir}
23
- overfit_num_sets: null
24
- variable_num_views: ${dataset.val.variable_num_views}
25
- num_views: ${dataset.num_views}
26
- covisibility_thres: 0.25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/dataset/{benchmark_518_snpp_tav2.yaml → benchmark_504_eth3d_snpp_tav2.yaml} RENAMED
@@ -5,13 +5,16 @@ defaults:
5
  num_views: 2
6
 
7
  # Test Resolution
8
- resolution_test_scannetpp: ${dataset.resolution_options.518_1_52_ar}
9
- resolution_test_tav2_wb: ${dataset.resolution_options.518_1_00_ar}
 
10
 
11
  # Test Set
12
  # Sample 10 multi-view sets from each scene
 
13
  # ScanNet++V2: 30 scenes
14
  # TartanAirV2-WB: 5 scenes
15
  test_dataset:
16
- "+ 300 @ ${dataset.scannetpp_wai.test.dataset_str}
 
17
  + 50 @ ${dataset.tav2_wb_wai.test.dataset_str}"
 
5
  num_views: 2
6
 
7
  # Test Resolution
8
+ resolution_test_eth3d: ${dataset.resolution_options.504_1_52_ar}
9
+ resolution_test_scannetpp: ${dataset.resolution_options.504_1_52_ar}
10
+ resolution_test_tav2_wb: ${dataset.resolution_options.504_1_00_ar}
11
 
12
  # Test Set
13
  # Sample 10 multi-view sets from each scene
14
+ # ETH3D: 13 scenes
15
  # ScanNet++V2: 30 scenes
16
  # TartanAirV2-WB: 5 scenes
17
  test_dataset:
18
+ "+ 130 @ ${dataset.eth3d_wai.test.dataset_str}
19
+ + 300 @ ${dataset.scannetpp_wai.test.dataset_str}
20
  + 50 @ ${dataset.tav2_wb_wai.test.dataset_str}"
configs/dataset/benchmark_512_snpp_tav2.yaml DELETED
@@ -1,17 +0,0 @@
1
- defaults:
2
- - default
3
-
4
- # Number of views parameter for the multi-view datasets
5
- num_views: 2
6
-
7
- # Test Resolution
8
- resolution_test_scannetpp: ${dataset.resolution_options.512_1_52_ar}
9
- resolution_test_tav2_wb: ${dataset.resolution_options.512_1_00_ar}
10
-
11
- # Test Set
12
- # Sample 10 multi-view sets from each scene
13
- # ScanNet++V2: 30 scenes
14
- # TartanAirV2-WB: 5 scenes
15
- test_dataset:
16
- "+ 300 @ ${dataset.scannetpp_wai.test.dataset_str}
17
- + 50 @ ${dataset.tav2_wb_wai.test.dataset_str}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/dataset/bmvs_518_many_ar_48ipg_8g.yaml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ defaults:
2
+ - default
3
+
4
+ # Number of views parameter for the multi-view datasets
5
+ num_views: 4
6
+
7
+ train:
8
+ # If True, the number of views can vary from batch to batch. The maximum number of views is num_views and minimum is 2. (On by default for N-view training)
9
+ variable_num_views: true
10
+
11
+ # Train Resolution
12
+ resolution_train: ${dataset.resolution_options.518_many_ar}
13
+
14
+ # Validation Resolution
15
+ resolution_val_blendedmvs: ${dataset.resolution_options.518_1_33_ar}
16
+
17
+ # Training Set
18
+ train_dataset:
19
+ "+ 140_000 @ ${dataset.blendedmvs_wai.train.dataset_str}"
20
+
21
+ # Validation Set
22
+ test_dataset:
23
+ "+ 4_000 @ ${dataset.blendedmvs_wai.val.dataset_str}"
configs/dataset/default.yaml CHANGED
@@ -1,14 +1,10 @@
1
  defaults:
2
  - resolution_options: default
3
  - ase_wai: default
4
- - bedlam_wai: default
5
  - blendedmvs_wai: default
6
  - dl3dv_wai: default
7
- - dtu_wai: default
8
  - dynamicreplica_wai: default
9
  - eth3d_wai: default
10
- - gta_sfm_wai: default
11
- - matrixcity_wai: default
12
  - megadepth_wai: default
13
  - mpsd_wai: default
14
  - mvs_synth_wai: default
@@ -16,10 +12,8 @@ defaults:
16
  - sailvos3d_wai: default
17
  - scannetpp_wai: default
18
  - spring_wai: default
19
- - structured3d_wai: default
20
  - tav2_wb_wai: default
21
  - unrealstereo4k_wai: default
22
- - xrooms_wai: default
23
 
24
  # Training Set, For example: BlendedMVS(split='train', resolution=(512, 384), transform=...)
25
  train_dataset: ???
 
1
  defaults:
2
  - resolution_options: default
3
  - ase_wai: default
 
4
  - blendedmvs_wai: default
5
  - dl3dv_wai: default
 
6
  - dynamicreplica_wai: default
7
  - eth3d_wai: default
 
 
8
  - megadepth_wai: default
9
  - mpsd_wai: default
10
  - mvs_synth_wai: default
 
12
  - sailvos3d_wai: default
13
  - scannetpp_wai: default
14
  - spring_wai: default
 
15
  - tav2_wb_wai: default
16
  - unrealstereo4k_wai: default
 
17
 
18
  # Training Set, For example: BlendedMVS(split='train', resolution=(512, 384), transform=...)
19
  train_dataset: ???
configs/dataset/dtu_wai/default.yaml DELETED
@@ -1,2 +0,0 @@
1
- defaults:
2
- - test: default
 
 
 
configs/dataset/dtu_wai/test/default.yaml DELETED
@@ -1,22 +0,0 @@
1
- dataset_str:
2
- "DTUWAI(
3
- resolution=${dataset.dtu_wai.test.dataset_resolution},
4
- principal_point_centered=${dataset.dtu_wai.test.principal_point_centered},
5
- seed=${dataset.dtu_wai.test.seed},
6
- transform='${dataset.dtu_wai.test.transform}',
7
- data_norm_type='${dataset.dtu_wai.test.data_norm_type}',
8
- ROOT='${dataset.dtu_wai.test.ROOT}',
9
- dataset_metadata_dir='${dataset.dtu_wai.test.dataset_metadata_dir}',
10
- variable_num_views=${dataset.dtu_wai.test.variable_num_views},
11
- num_views=${dataset.dtu_wai.test.num_views},
12
- covisibility_thres=${dataset.dtu_wai.test.covisibility_thres})"
13
- dataset_resolution: ${dataset.resolution_test_dtu}
14
- principal_point_centered: ${dataset.principal_point_centered}
15
- seed: 777
16
- transform: 'imgnorm'
17
- data_norm_type: ${model.data_norm_type}
18
- ROOT: ${root_data_dir}/dtu
19
- dataset_metadata_dir: ${mapanything_dataset_metadata_dir}
20
- variable_num_views: ${dataset.test.variable_num_views}
21
- num_views: ${dataset.num_views}
22
- covisibility_thres: 0.25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/dataset/gta_sfm_wai/default.yaml DELETED
@@ -1,3 +0,0 @@
1
- defaults:
2
- - train: default
3
- - val: default
 
 
 
 
configs/dataset/gta_sfm_wai/train/default.yaml DELETED
@@ -1,26 +0,0 @@
1
- dataset_str:
2
- "GTASfMWAI(
3
- split='${dataset.gta_sfm_wai.train.split}',
4
- resolution=${dataset.gta_sfm_wai.train.dataset_resolution},
5
- principal_point_centered=${dataset.gta_sfm_wai.train.principal_point_centered},
6
- aug_crop=${dataset.gta_sfm_wai.train.aug_crop},
7
- transform='${dataset.gta_sfm_wai.train.transform}',
8
- data_norm_type='${dataset.gta_sfm_wai.train.data_norm_type}',
9
- ROOT='${dataset.gta_sfm_wai.train.ROOT}',
10
- dataset_metadata_dir='${dataset.gta_sfm_wai.train.dataset_metadata_dir}',
11
- overfit_num_sets=${dataset.gta_sfm_wai.train.overfit_num_sets},
12
- variable_num_views=${dataset.gta_sfm_wai.train.variable_num_views},
13
- num_views=${dataset.gta_sfm_wai.train.num_views},
14
- covisibility_thres=${dataset.gta_sfm_wai.train.covisibility_thres})"
15
- split: 'train'
16
- dataset_resolution: ${dataset.resolution_train}
17
- principal_point_centered: ${dataset.principal_point_centered}
18
- aug_crop: 16
19
- transform: 'colorjitter+grayscale+gaublur'
20
- data_norm_type: ${model.data_norm_type}
21
- ROOT: ${root_data_dir}/gta_sfm
22
- dataset_metadata_dir: ${mapanything_dataset_metadata_dir}
23
- overfit_num_sets: null
24
- variable_num_views: ${dataset.train.variable_num_views}
25
- num_views: ${dataset.num_views}
26
- covisibility_thres: 0.25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/dataset/gta_sfm_wai/val/default.yaml DELETED
@@ -1,26 +0,0 @@
1
- dataset_str:
2
- "GTASfMWAI(
3
- split='${dataset.gta_sfm_wai.val.split}',
4
- resolution=${dataset.gta_sfm_wai.val.dataset_resolution},
5
- principal_point_centered=${dataset.gta_sfm_wai.val.principal_point_centered},
6
- seed=${dataset.gta_sfm_wai.val.seed},
7
- transform='${dataset.gta_sfm_wai.val.transform}',
8
- data_norm_type='${dataset.gta_sfm_wai.val.data_norm_type}',
9
- ROOT='${dataset.gta_sfm_wai.val.ROOT}',
10
- dataset_metadata_dir='${dataset.gta_sfm_wai.val.dataset_metadata_dir}',
11
- overfit_num_sets=${dataset.gta_sfm_wai.val.overfit_num_sets},
12
- variable_num_views=${dataset.gta_sfm_wai.val.variable_num_views},
13
- num_views=${dataset.gta_sfm_wai.val.num_views},
14
- covisibility_thres=${dataset.gta_sfm_wai.val.covisibility_thres})"
15
- split: 'val'
16
- dataset_resolution: ${dataset.resolution_val_gta_sfm}
17
- principal_point_centered: ${dataset.principal_point_centered}
18
- seed: 777
19
- transform: 'imgnorm'
20
- data_norm_type: ${model.data_norm_type}
21
- ROOT: ${root_data_dir}/gta_sfm
22
- dataset_metadata_dir: ${mapanything_dataset_metadata_dir}
23
- overfit_num_sets: null
24
- variable_num_views: ${dataset.val.variable_num_views}
25
- num_views: ${dataset.num_views}
26
- covisibility_thres: 0.25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/dataset/matrixcity_wai/default.yaml DELETED
@@ -1,3 +0,0 @@
1
- defaults:
2
- - train: default
3
- - val: default
 
 
 
 
configs/dataset/matrixcity_wai/train/default.yaml DELETED
@@ -1,26 +0,0 @@
1
- dataset_str:
2
- "MatrixCityWAI(
3
- split='${dataset.matrixcity_wai.train.split}',
4
- resolution=${dataset.matrixcity_wai.train.dataset_resolution},
5
- principal_point_centered=${dataset.matrixcity_wai.train.principal_point_centered},
6
- aug_crop=${dataset.matrixcity_wai.train.aug_crop},
7
- transform='${dataset.matrixcity_wai.train.transform}',
8
- data_norm_type='${dataset.matrixcity_wai.train.data_norm_type}',
9
- ROOT='${dataset.matrixcity_wai.train.ROOT}',
10
- dataset_metadata_dir='${dataset.matrixcity_wai.train.dataset_metadata_dir}',
11
- overfit_num_sets=${dataset.matrixcity_wai.train.overfit_num_sets},
12
- variable_num_views=${dataset.matrixcity_wai.train.variable_num_views},
13
- num_views=${dataset.matrixcity_wai.train.num_views},
14
- covisibility_thres=${dataset.matrixcity_wai.train.covisibility_thres})"
15
- split: 'train'
16
- dataset_resolution: ${dataset.resolution_train}
17
- principal_point_centered: ${dataset.principal_point_centered}
18
- aug_crop: 16
19
- transform: 'colorjitter+grayscale+gaublur'
20
- data_norm_type: ${model.data_norm_type}
21
- ROOT: ${root_data_dir}/matrixcity
22
- dataset_metadata_dir: ${mapanything_dataset_metadata_dir}
23
- overfit_num_sets: null
24
- variable_num_views: ${dataset.train.variable_num_views}
25
- num_views: ${dataset.num_views}
26
- covisibility_thres: 0.25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/dataset/matrixcity_wai/val/default.yaml DELETED
@@ -1,26 +0,0 @@
1
- dataset_str:
2
- "MatrixCityWAI(
3
- split='${dataset.matrixcity_wai.val.split}',
4
- resolution=${dataset.matrixcity_wai.val.dataset_resolution},
5
- principal_point_centered=${dataset.matrixcity_wai.val.principal_point_centered},
6
- seed=${dataset.matrixcity_wai.val.seed},
7
- transform='${dataset.matrixcity_wai.val.transform}',
8
- data_norm_type='${dataset.matrixcity_wai.val.data_norm_type}',
9
- ROOT='${dataset.matrixcity_wai.val.ROOT}',
10
- dataset_metadata_dir='${dataset.matrixcity_wai.val.dataset_metadata_dir}',
11
- overfit_num_sets=${dataset.matrixcity_wai.val.overfit_num_sets},
12
- variable_num_views=${dataset.matrixcity_wai.val.variable_num_views},
13
- num_views=${dataset.matrixcity_wai.val.num_views},
14
- covisibility_thres=${dataset.matrixcity_wai.val.covisibility_thres})"
15
- split: 'val'
16
- dataset_resolution: ${dataset.resolution_val_matrixcity}
17
- principal_point_centered: ${dataset.principal_point_centered}
18
- seed: 777
19
- transform: 'imgnorm'
20
- data_norm_type: ${model.data_norm_type}
21
- ROOT: ${root_data_dir}/matrixcity
22
- dataset_metadata_dir: ${mapanything_dataset_metadata_dir}
23
- overfit_num_sets: null
24
- variable_num_views: ${dataset.val.variable_num_views}
25
- num_views: ${dataset.num_views}
26
- covisibility_thres: 0.25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/dataset/{megatrain_12d_518_many_ar_24ipg_16g.yaml → megatrain_13d_518_many_ar_24ipg_8g.yaml} RENAMED
@@ -14,6 +14,7 @@ resolution_train: ${dataset.resolution_options.518_many_ar}
14
  # Validation Resolution
15
  resolution_val_ase: ${dataset.resolution_options.518_1_00_ar}
16
  resolution_val_blendedmvs: ${dataset.resolution_options.518_1_33_ar}
 
17
  resolution_val_dynamicreplica: ${dataset.resolution_options.518_1_77_ar}
18
  resolution_val_megadepth: ${dataset.resolution_options.518_1_52_ar}
19
  resolution_val_mpsd: ${dataset.resolution_options.518_1_77_ar}
@@ -27,23 +28,25 @@ resolution_val_unrealstereo4k: ${dataset.resolution_options.518_1_77_ar}
27
 
28
  # Training Set
29
  train_dataset:
30
- "+ 58_000 @ ${dataset.ase_wai.train.dataset_str}
31
- + 58_000 @ ${dataset.blendedmvs_wai.train.dataset_str}
32
- + 45_000 @ ${dataset.dynamicreplica_wai.train.dataset_str}
33
- + 58_000 @ ${dataset.megadepth_wai.train.dataset_str}
34
- + 58_000 @ ${dataset.mpsd_wai.train.dataset_str}
35
- + 58_000 @ ${dataset.mvs_synth_wai.train.dataset_str}
36
- + 58_000 @ ${dataset.paralleldomain4d_wai.train.dataset_str}
37
- + 58_000 @ ${dataset.sailvos3d_wai.train.dataset_str}
38
- + 58_000 @ ${dataset.scannetpp_wai.train.dataset_str}
39
- + 2_000 @ ${dataset.spring_wai.train.dataset_str}
40
- + 58_000 @ ${dataset.tav2_wb_wai.train.dataset_str}
41
- + 5_500 @ ${dataset.unrealstereo4k_wai.train.dataset_str}"
 
42
 
43
  # Validation Set
44
  test_dataset:
45
  "+ 4_000 @ ${dataset.ase_wai.val.dataset_str}
46
  + 4_000 @ ${dataset.blendedmvs_wai.val.dataset_str}
 
47
  + 4_000 @ ${dataset.dynamicreplica_wai.val.dataset_str}
48
  + 4_000 @ ${dataset.megadepth_wai.val.dataset_str}
49
  + 4_000 @ ${dataset.mpsd_wai.val.dataset_str}
 
14
  # Validation Resolution
15
  resolution_val_ase: ${dataset.resolution_options.518_1_00_ar}
16
  resolution_val_blendedmvs: ${dataset.resolution_options.518_1_33_ar}
17
+ resolution_val_dl3dv: ${dataset.resolution_options.518_1_77_ar}
18
  resolution_val_dynamicreplica: ${dataset.resolution_options.518_1_77_ar}
19
  resolution_val_megadepth: ${dataset.resolution_options.518_1_52_ar}
20
  resolution_val_mpsd: ${dataset.resolution_options.518_1_77_ar}
 
28
 
29
  # Training Set
30
  train_dataset:
31
+ "+ 26_250 @ ${dataset.ase_wai.train.dataset_str}
32
+ + 26_250 @ ${dataset.blendedmvs_wai.train.dataset_str}
33
+ + 26_250 @ ${dataset.dl3dv_wai.train.dataset_str}
34
+ + 20_000 @ ${dataset.dynamicreplica_wai.train.dataset_str}
35
+ + 26_250 @ ${dataset.megadepth_wai.train.dataset_str}
36
+ + 26_250 @ ${dataset.mpsd_wai.train.dataset_str}
37
+ + 26_250 @ ${dataset.mvs_synth_wai.train.dataset_str}
38
+ + 26_250 @ ${dataset.paralleldomain4d_wai.train.dataset_str}
39
+ + 26_250 @ ${dataset.sailvos3d_wai.train.dataset_str}
40
+ + 26_250 @ ${dataset.scannetpp_wai.train.dataset_str}
41
+ + 1_000 @ ${dataset.spring_wai.train.dataset_str}
42
+ + 26_250 @ ${dataset.tav2_wb_wai.train.dataset_str}
43
+ + 2_750 @ ${dataset.unrealstereo4k_wai.train.dataset_str}"
44
 
45
  # Validation Set
46
  test_dataset:
47
  "+ 4_000 @ ${dataset.ase_wai.val.dataset_str}
48
  + 4_000 @ ${dataset.blendedmvs_wai.val.dataset_str}
49
+ + 4_000 @ ${dataset.dl3dv_wai.val.dataset_str}
50
  + 4_000 @ ${dataset.dynamicreplica_wai.val.dataset_str}
51
  + 4_000 @ ${dataset.megadepth_wai.val.dataset_str}
52
  + 4_000 @ ${dataset.mpsd_wai.val.dataset_str}
configs/dataset/{megatrain_11d_se_518_many_ar_48ipg_64g.yaml → megatrain_13d_518_many_ar_36ipg_64g.yaml} RENAMED
@@ -13,8 +13,10 @@ resolution_train: ${dataset.resolution_options.518_many_ar}
13
 
14
  # Validation Resolution
15
  resolution_val_ase: ${dataset.resolution_options.518_1_00_ar}
 
16
  resolution_val_dl3dv: ${dataset.resolution_options.518_1_77_ar}
17
  resolution_val_dynamicreplica: ${dataset.resolution_options.518_1_77_ar}
 
18
  resolution_val_mpsd: ${dataset.resolution_options.518_1_77_ar}
19
  resolution_val_mvs_synth: ${dataset.resolution_options.518_1_77_ar}
20
  resolution_val_paralleldomain4d: ${dataset.resolution_options.518_1_33_ar}
@@ -26,23 +28,27 @@ resolution_val_unrealstereo4k: ${dataset.resolution_options.518_1_77_ar}
26
 
27
  # Training Set
28
  train_dataset:
29
- "+ 2_450_000 @ ${dataset.ase_wai.train.dataset_str}
30
- + 250_000 @ ${dataset.dl3dv_wai.train.dataset_str}
31
- + 12_400 @ ${dataset.dynamicreplica_wai.train.dataset_str}
32
- + 1_675_000 @ ${dataset.mpsd_wai.train.dataset_str}
33
- + 3_000 @ ${dataset.mvs_synth_wai.train.dataset_str}
34
- + 36_000 @ ${dataset.paralleldomain4d_wai.train.dataset_str}
35
- + 4_000 @ ${dataset.sailvos3d_wai.train.dataset_str}
36
- + 22_600 @ ${dataset.scannetpp_wai.train.dataset_str}
37
- + 800 @ ${dataset.spring_wai.train.dataset_str}
38
- + 4_000 @ ${dataset.tav2_wb_wai.train.dataset_str}
39
- + 200 @ ${dataset.unrealstereo4k_wai.train.dataset_str}"
 
 
40
 
41
  # Validation Set
42
  test_dataset:
43
  "+ 4_000 @ ${dataset.ase_wai.val.dataset_str}
 
44
  + 4_000 @ ${dataset.dl3dv_wai.val.dataset_str}
45
  + 4_000 @ ${dataset.dynamicreplica_wai.val.dataset_str}
 
46
  + 4_000 @ ${dataset.mpsd_wai.val.dataset_str}
47
  + 4_000 @ ${dataset.mvs_synth_wai.val.dataset_str}
48
  + 4_000 @ ${dataset.paralleldomain4d_wai.val.dataset_str}
 
13
 
14
  # Validation Resolution
15
  resolution_val_ase: ${dataset.resolution_options.518_1_00_ar}
16
+ resolution_val_blendedmvs: ${dataset.resolution_options.518_1_33_ar}
17
  resolution_val_dl3dv: ${dataset.resolution_options.518_1_77_ar}
18
  resolution_val_dynamicreplica: ${dataset.resolution_options.518_1_77_ar}
19
+ resolution_val_megadepth: ${dataset.resolution_options.518_1_52_ar}
20
  resolution_val_mpsd: ${dataset.resolution_options.518_1_77_ar}
21
  resolution_val_mvs_synth: ${dataset.resolution_options.518_1_77_ar}
22
  resolution_val_paralleldomain4d: ${dataset.resolution_options.518_1_33_ar}
 
28
 
29
  # Training Set
30
  train_dataset:
31
+ "+ 315_000 @ ${dataset.ase_wai.train.dataset_str}
32
+ + 315_000 @ ${dataset.blendedmvs_wai.train.dataset_str}
33
+ + 315_000 @ ${dataset.dl3dv_wai.train.dataset_str}
34
+ + 240_000 @ ${dataset.dynamicreplica_wai.train.dataset_str}
35
+ + 315_000 @ ${dataset.megadepth_wai.train.dataset_str}
36
+ + 315_000 @ ${dataset.mpsd_wai.train.dataset_str}
37
+ + 315_000 @ ${dataset.mvs_synth_wai.train.dataset_str}
38
+ + 315_000 @ ${dataset.paralleldomain4d_wai.train.dataset_str}
39
+ + 315_000 @ ${dataset.sailvos3d_wai.train.dataset_str}
40
+ + 315_000 @ ${dataset.scannetpp_wai.train.dataset_str}
41
+ + 12_000 @ ${dataset.spring_wai.train.dataset_str}
42
+ + 315_000 @ ${dataset.tav2_wb_wai.train.dataset_str}
43
+ + 33_000 @ ${dataset.unrealstereo4k_wai.train.dataset_str}"
44
 
45
  # Validation Set
46
  test_dataset:
47
  "+ 4_000 @ ${dataset.ase_wai.val.dataset_str}
48
+ + 4_000 @ ${dataset.blendedmvs_wai.val.dataset_str}
49
  + 4_000 @ ${dataset.dl3dv_wai.val.dataset_str}
50
  + 4_000 @ ${dataset.dynamicreplica_wai.val.dataset_str}
51
+ + 4_000 @ ${dataset.megadepth_wai.val.dataset_str}
52
  + 4_000 @ ${dataset.mpsd_wai.val.dataset_str}
53
  + 4_000 @ ${dataset.mvs_synth_wai.val.dataset_str}
54
  + 4_000 @ ${dataset.paralleldomain4d_wai.val.dataset_str}
configs/dataset/megatrain_13d_518_many_ar_48ipg_8g_mono.yaml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ defaults:
2
+ - default
3
+
4
+ # Number of views parameter for the multi-view datasets
5
+ num_views: 1
6
+
7
+ train:
8
+ # If True, the number of views can vary from batch to batch. The maximum number of views is num_views and minimum is 2. (On by default for N-view training)
9
+ variable_num_views: true
10
+
11
+ # Train Resolution
12
+ resolution_train: ${dataset.resolution_options.518_many_ar}
13
+
14
+ # Validation Resolution
15
+ resolution_val_ase: ${dataset.resolution_options.518_1_00_ar}
16
+ resolution_val_blendedmvs: ${dataset.resolution_options.518_1_33_ar}
17
+ resolution_val_dl3dv: ${dataset.resolution_options.518_1_77_ar}
18
+ resolution_val_dynamicreplica: ${dataset.resolution_options.518_1_77_ar}
19
+ resolution_val_megadepth: ${dataset.resolution_options.518_1_52_ar}
20
+ resolution_val_mpsd: ${dataset.resolution_options.518_1_77_ar}
21
+ resolution_val_mvs_synth: ${dataset.resolution_options.518_1_77_ar}
22
+ resolution_val_paralleldomain4d: ${dataset.resolution_options.518_1_33_ar}
23
+ resolution_val_sailvos3d: ${dataset.resolution_options.518_1_52_ar}
24
+ resolution_val_scannetpp: ${dataset.resolution_options.518_1_52_ar}
25
+ resolution_val_spring: ${dataset.resolution_options.518_1_77_ar}
26
+ resolution_val_tav2_wb: ${dataset.resolution_options.518_1_00_ar}
27
+ resolution_val_unrealstereo4k: ${dataset.resolution_options.518_1_77_ar}
28
+
29
+ # Training Set
30
+ train_dataset:
31
+ "+ 105_000 @ ${dataset.ase_wai.train.dataset_str}
32
+ + 105_000 @ ${dataset.blendedmvs_wai.train.dataset_str}
33
+ + 105_000 @ ${dataset.dl3dv_wai.train.dataset_str}
34
+ + 80_000 @ ${dataset.dynamicreplica_wai.train.dataset_str}
35
+ + 105_000 @ ${dataset.megadepth_wai.train.dataset_str}
36
+ + 105_000 @ ${dataset.mpsd_wai.train.dataset_str}
37
+ + 105_000 @ ${dataset.mvs_synth_wai.train.dataset_str}
38
+ + 105_000 @ ${dataset.paralleldomain4d_wai.train.dataset_str}
39
+ + 105_000 @ ${dataset.sailvos3d_wai.train.dataset_str}
40
+ + 105_000 @ ${dataset.scannetpp_wai.train.dataset_str}
41
+ + 4_000 @ ${dataset.spring_wai.train.dataset_str}
42
+ + 105_000 @ ${dataset.tav2_wb_wai.train.dataset_str}
43
+ + 11_000 @ ${dataset.unrealstereo4k_wai.train.dataset_str}"
44
+
45
+ # Validation Set
46
+ test_dataset:
47
+ "+ 4_000 @ ${dataset.ase_wai.val.dataset_str}
48
+ + 4_000 @ ${dataset.blendedmvs_wai.val.dataset_str}
49
+ + 4_000 @ ${dataset.dl3dv_wai.val.dataset_str}
50
+ + 4_000 @ ${dataset.dynamicreplica_wai.val.dataset_str}
51
+ + 4_000 @ ${dataset.megadepth_wai.val.dataset_str}
52
+ + 4_000 @ ${dataset.mpsd_wai.val.dataset_str}
53
+ + 4_000 @ ${dataset.mvs_synth_wai.val.dataset_str}
54
+ + 4_000 @ ${dataset.paralleldomain4d_wai.val.dataset_str}
55
+ + 4_000 @ ${dataset.sailvos3d_wai.val.dataset_str}
56
+ + 4_000 @ ${dataset.scannetpp_wai.val.dataset_str}
57
+ + 500 @ ${dataset.spring_wai.val.dataset_str}
58
+ + 4_000 @ ${dataset.tav2_wb_wai.val.dataset_str}
59
+ + 500 @ ${dataset.unrealstereo4k_wai.val.dataset_str}"
configs/dataset/megatrain_6d_518_many_ar_36ipg_64g.yaml ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ defaults:
2
+ - default
3
+
4
+ # Number of views parameter for the multi-view datasets
5
+ num_views: 4
6
+
7
+ train:
8
+ # If True, the number of views can vary from batch to batch. The maximum number of views is num_views and minimum is 2. (On by default for N-view training)
9
+ variable_num_views: true
10
+
11
+ # Train Resolution
12
+ resolution_train: ${dataset.resolution_options.518_many_ar}
13
+
14
+ # Validation Resolution
15
+ resolution_val_blendedmvs: ${dataset.resolution_options.518_1_33_ar}
16
+ resolution_val_mpsd: ${dataset.resolution_options.518_1_77_ar}
17
+ resolution_val_scannetpp: ${dataset.resolution_options.518_1_52_ar}
18
+ resolution_val_spring: ${dataset.resolution_options.518_1_77_ar}
19
+ resolution_val_tav2_wb: ${dataset.resolution_options.518_1_00_ar}
20
+ resolution_val_unrealstereo4k: ${dataset.resolution_options.518_1_77_ar}
21
+
22
+ # Training Set
23
+ train_dataset:
24
+ "+ 840_000 @ ${dataset.blendedmvs_wai.train.dataset_str}
25
+ + 840_000 @ ${dataset.mpsd_wai.train.dataset_str}
26
+ + 840_000 @ ${dataset.scannetpp_wai.train.dataset_str}
27
+ + 33_000 @ ${dataset.spring_wai.train.dataset_str}
28
+ + 840_000 @ ${dataset.tav2_wb_wai.train.dataset_str}
29
+ + 87_000 @ ${dataset.unrealstereo4k_wai.train.dataset_str}"
30
+
31
+ # Validation Set
32
+ test_dataset:
33
+ "+ 4_000 @ ${dataset.blendedmvs_wai.val.dataset_str}
34
+ + 4_000 @ ${dataset.mpsd_wai.val.dataset_str}
35
+ + 4_000 @ ${dataset.scannetpp_wai.val.dataset_str}
36
+ + 500 @ ${dataset.spring_wai.val.dataset_str}
37
+ + 4_000 @ ${dataset.tav2_wb_wai.val.dataset_str}
38
+ + 500 @ ${dataset.unrealstereo4k_wai.val.dataset_str}"
configs/dataset/structured3d_wai/default.yaml DELETED
@@ -1,3 +0,0 @@
1
- defaults:
2
- - train: default
3
- - val: default
 
 
 
 
configs/dataset/structured3d_wai/train/default.yaml DELETED
@@ -1,26 +0,0 @@
1
- dataset_str:
2
- "Structured3DWAI(
3
- split='${dataset.structured3d_wai.train.split}',
4
- resolution=${dataset.structured3d_wai.train.dataset_resolution},
5
- principal_point_centered=${dataset.structured3d_wai.train.principal_point_centered},
6
- aug_crop=${dataset.structured3d_wai.train.aug_crop},
7
- transform='${dataset.structured3d_wai.train.transform}',
8
- data_norm_type='${dataset.structured3d_wai.train.data_norm_type}',
9
- ROOT='${dataset.structured3d_wai.train.ROOT}',
10
- dataset_metadata_dir='${dataset.structured3d_wai.train.dataset_metadata_dir}',
11
- overfit_num_sets=${dataset.structured3d_wai.train.overfit_num_sets},
12
- variable_num_views=${dataset.structured3d_wai.train.variable_num_views},
13
- num_views=${dataset.structured3d_wai.train.num_views},
14
- covisibility_thres=${dataset.structured3d_wai.train.covisibility_thres})"
15
- split: 'train'
16
- dataset_resolution: ${dataset.resolution_train}
17
- principal_point_centered: ${dataset.principal_point_centered}
18
- aug_crop: 16
19
- transform: 'colorjitter+grayscale+gaublur'
20
- data_norm_type: ${model.data_norm_type}
21
- ROOT: ${root_data_dir}/structured3d
22
- dataset_metadata_dir: ${mapanything_dataset_metadata_dir}
23
- overfit_num_sets: null
24
- variable_num_views: ${dataset.train.variable_num_views}
25
- num_views: ${dataset.num_views}
26
- covisibility_thres: 0.25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/dataset/structured3d_wai/val/default.yaml DELETED
@@ -1,26 +0,0 @@
1
- dataset_str:
2
- "Structured3DWAI(
3
- split='${dataset.structured3d_wai.val.split}',
4
- resolution=${dataset.structured3d_wai.val.dataset_resolution},
5
- principal_point_centered=${dataset.structured3d_wai.val.principal_point_centered},
6
- seed=${dataset.structured3d_wai.val.seed},
7
- transform='${dataset.structured3d_wai.val.transform}',
8
- data_norm_type='${dataset.structured3d_wai.val.data_norm_type}',
9
- ROOT='${dataset.structured3d_wai.val.ROOT}',
10
- dataset_metadata_dir='${dataset.structured3d_wai.val.dataset_metadata_dir}',
11
- overfit_num_sets=${dataset.structured3d_wai.val.overfit_num_sets},
12
- variable_num_views=${dataset.structured3d_wai.val.variable_num_views},
13
- num_views=${dataset.structured3d_wai.val.num_views},
14
- covisibility_thres=${dataset.structured3d_wai.val.covisibility_thres})"
15
- split: 'val'
16
- dataset_resolution: ${dataset.resolution_val_structured3d}
17
- principal_point_centered: ${dataset.principal_point_centered}
18
- seed: 777
19
- transform: 'imgnorm'
20
- data_norm_type: ${model.data_norm_type}
21
- ROOT: ${root_data_dir}/structured3d
22
- dataset_metadata_dir: ${mapanything_dataset_metadata_dir}
23
- overfit_num_sets: null
24
- variable_num_views: ${dataset.val.variable_num_views}
25
- num_views: ${dataset.num_views}
26
- covisibility_thres: 0.25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/dataset/xrooms_wai/default.yaml DELETED
@@ -1,3 +0,0 @@
1
- defaults:
2
- - train: default
3
- - val: default
 
 
 
 
configs/dataset/xrooms_wai/train/default.yaml DELETED
@@ -1,26 +0,0 @@
1
- dataset_str:
2
- "XRoomsWAI(
3
- split='${dataset.xrooms_wai.train.split}',
4
- resolution=${dataset.xrooms_wai.train.dataset_resolution},
5
- principal_point_centered=${dataset.xrooms_wai.train.principal_point_centered},
6
- aug_crop=${dataset.xrooms_wai.train.aug_crop},
7
- transform='${dataset.xrooms_wai.train.transform}',
8
- data_norm_type='${dataset.xrooms_wai.train.data_norm_type}',
9
- ROOT='${dataset.xrooms_wai.train.ROOT}',
10
- dataset_metadata_dir='${dataset.xrooms_wai.train.dataset_metadata_dir}',
11
- overfit_num_sets=${dataset.xrooms_wai.train.overfit_num_sets},
12
- variable_num_views=${dataset.xrooms_wai.train.variable_num_views},
13
- num_views=${dataset.xrooms_wai.train.num_views},
14
- covisibility_thres=${dataset.xrooms_wai.train.covisibility_thres})"
15
- split: 'train'
16
- dataset_resolution: ${dataset.resolution_train}
17
- principal_point_centered: ${dataset.principal_point_centered}
18
- aug_crop: 16
19
- transform: 'colorjitter+grayscale+gaublur'
20
- data_norm_type: ${model.data_norm_type}
21
- ROOT: ${root_data_dir}/xrooms
22
- dataset_metadata_dir: ${mapanything_dataset_metadata_dir}
23
- overfit_num_sets: null
24
- variable_num_views: ${dataset.train.variable_num_views}
25
- num_views: ${dataset.num_views}
26
- covisibility_thres: 0.25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/dataset/xrooms_wai/val/default.yaml DELETED
@@ -1,26 +0,0 @@
1
- dataset_str:
2
- "XRoomsWAI(
3
- split='${dataset.xrooms_wai.val.split}',
4
- resolution=${dataset.xrooms_wai.val.dataset_resolution},
5
- principal_point_centered=${dataset.xrooms_wai.val.principal_point_centered},
6
- seed=${dataset.xrooms_wai.val.seed},
7
- transform='${dataset.xrooms_wai.val.transform}',
8
- data_norm_type='${dataset.xrooms_wai.val.data_norm_type}',
9
- ROOT='${dataset.xrooms_wai.val.ROOT}',
10
- dataset_metadata_dir='${dataset.xrooms_wai.val.dataset_metadata_dir}',
11
- overfit_num_sets=${dataset.xrooms_wai.val.overfit_num_sets},
12
- variable_num_views=${dataset.xrooms_wai.val.variable_num_views},
13
- num_views=${dataset.xrooms_wai.val.num_views},
14
- covisibility_thres=${dataset.xrooms_wai.val.covisibility_thres})"
15
- split: 'val'
16
- dataset_resolution: ${dataset.resolution_val_xrooms}
17
- principal_point_centered: ${dataset.principal_point_centered}
18
- seed: 777
19
- transform: 'imgnorm'
20
- data_norm_type: ${model.data_norm_type}
21
- ROOT: ${root_data_dir}/xrooms
22
- dataset_metadata_dir: ${mapanything_dataset_metadata_dir}
23
- overfit_num_sets: null
24
- variable_num_views: ${dataset.val.variable_num_views}
25
- num_views: ${dataset.num_views}
26
- covisibility_thres: 0.25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/loss/moge2_loss.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # Training Loss
2
+ train_criterion: "ExcludeTopNPercentPixelLoss(Regr3D(RobustRegressionLoss(alpha=0.5, scaling_c=0.05), norm_mode='?avg_dis', loss_in_log=True, flatten_across_image_only=True), top_n_percent=5, apply_to_real_data_only=True) + 3.0 * NormalGMLoss(norm_mode='avg_dis', apply_normal_and_gm_loss_to_synthetic_data_only=True)"
3
+ # Validation Loss
4
+ test_criterion: "ExcludeTopNPercentPixelLoss(Regr3D(RobustRegressionLoss(alpha=0.5, scaling_c=0.05), norm_mode='?avg_dis', loss_in_log=True, flatten_across_image_only=True), top_n_percent=5, apply_to_real_data_only=True) + 3.0 * NormalGMLoss(norm_mode='avg_dis', apply_normal_and_gm_loss_to_synthetic_data_only=True)"
configs/loss/overall_loss_highpm_plus_rel_pose.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # Training Loss
2
+ train_criterion: "ConfAndExcludeTopNPercentPixelLoss(FactoredGeometryScaleRegr3DPlusNormalGMLoss(RobustRegressionLoss(alpha=0.5, scaling_c=0.05), norm_mode='avg_dis', depth_type_for_loss='depth_along_ray', loss_in_log=True, flatten_across_image_only=True, compute_absolute_pose_loss=True, compute_pairwise_relative_pose_loss=True, convert_predictions_to_view0_frame=False, compute_world_frame_points_loss=True, apply_normal_and_gm_loss_to_synthetic_data_only=True, cam_frame_points_loss_weight=0.1, depth_loss_weight=0.1, ray_directions_loss_weight=0.1, pose_quats_loss_weight=0.1, pose_trans_loss_weight=0.1, scale_loss_weight=0.1, world_frame_points_loss_weight=1, normal_loss_weight=0.3, gm_loss_weight=0.3), conf_alpha=0.2, top_n_percent=5, apply_to_real_data_only=True, conf_loss_set_indices=[0], exclude_loss_set_indices=[1, 2]) + 0.03 * NonAmbiguousMaskLoss(BCELoss())"
3
+ # Validation Loss
4
+ test_criterion: "ExcludeTopNPercentPixelLoss(FactoredGeometryScaleRegr3DPlusNormalGMLoss(RobustRegressionLoss(alpha=0.5, scaling_c=0.05), norm_mode='avg_dis', depth_type_for_loss='depth_along_ray', loss_in_log=True, flatten_across_image_only=True, compute_absolute_pose_loss=True, compute_pairwise_relative_pose_loss=True, convert_predictions_to_view0_frame=False, compute_world_frame_points_loss=True, apply_normal_and_gm_loss_to_synthetic_data_only=True, cam_frame_points_loss_weight=0.1, depth_loss_weight=0.1, ray_directions_loss_weight=0.1, pose_quats_loss_weight=0.1, pose_trans_loss_weight=0.1, scale_loss_weight=0.1, world_frame_points_loss_weight=1, normal_loss_weight=0.3, gm_loss_weight=0.3), top_n_percent=5, apply_to_real_data_only=True, loss_set_indices=[0, 1, 2]) + 0.03 * NonAmbiguousMaskLoss(BCELoss())"
configs/loss/overall_loss_highpm_plus_rel_pose_no_conf.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # Training Loss
2
+ train_criterion: "ExcludeTopNPercentPixelLoss(FactoredGeometryScaleRegr3DPlusNormalGMLoss(RobustRegressionLoss(alpha=0.5, scaling_c=0.05), norm_mode='avg_dis', depth_type_for_loss='depth_along_ray', loss_in_log=True, flatten_across_image_only=True, compute_absolute_pose_loss=True, compute_pairwise_relative_pose_loss=True, convert_predictions_to_view0_frame=False, compute_world_frame_points_loss=True, apply_normal_and_gm_loss_to_synthetic_data_only=True, cam_frame_points_loss_weight=0.1, depth_loss_weight=0.1, ray_directions_loss_weight=0.1, pose_quats_loss_weight=0.1, pose_trans_loss_weight=0.1, scale_loss_weight=0.1, world_frame_points_loss_weight=1, normal_loss_weight=0.3, gm_loss_weight=0.3), top_n_percent=5, apply_to_real_data_only=True, loss_set_indices=[0, 1, 2]) + 0.03 * NonAmbiguousMaskLoss(BCELoss())"
3
+ # Validation Loss
4
+ test_criterion: "ExcludeTopNPercentPixelLoss(FactoredGeometryScaleRegr3DPlusNormalGMLoss(RobustRegressionLoss(alpha=0.5, scaling_c=0.05), norm_mode='avg_dis', depth_type_for_loss='depth_along_ray', loss_in_log=True, flatten_across_image_only=True, compute_absolute_pose_loss=True, compute_pairwise_relative_pose_loss=True, convert_predictions_to_view0_frame=False, compute_world_frame_points_loss=True, apply_normal_and_gm_loss_to_synthetic_data_only=True, cam_frame_points_loss_weight=0.1, depth_loss_weight=0.1, ray_directions_loss_weight=0.1, pose_quats_loss_weight=0.1, pose_trans_loss_weight=0.1, scale_loss_weight=0.1, world_frame_points_loss_weight=1, normal_loss_weight=0.3, gm_loss_weight=0.3), top_n_percent=5, apply_to_real_data_only=True, loss_set_indices=[0, 1, 2]) + 0.03 * NonAmbiguousMaskLoss(BCELoss())"
configs/loss/overall_loss_highpm_rel_pose_no_ref_view.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # Training Loss
2
+ train_criterion: "ConfAndExcludeTopNPercentPixelLoss(FactoredGeometryScaleRegr3DPlusNormalGMLoss(RobustRegressionLoss(alpha=0.5, scaling_c=0.05), norm_mode='avg_dis', depth_type_for_loss='depth_along_ray', loss_in_log=True, flatten_across_image_only=True, compute_absolute_pose_loss=False, compute_pairwise_relative_pose_loss=True, convert_predictions_to_view0_frame=True, compute_world_frame_points_loss=True, apply_normal_and_gm_loss_to_synthetic_data_only=True, cam_frame_points_loss_weight=0.1, depth_loss_weight=0.1, ray_directions_loss_weight=0.1, pose_quats_loss_weight=0.1, pose_trans_loss_weight=0.1, scale_loss_weight=0.1, world_frame_points_loss_weight=1, normal_loss_weight=0.3, gm_loss_weight=0.3), conf_alpha=0.2, top_n_percent=5, apply_to_real_data_only=True, conf_loss_set_indices=[0], exclude_loss_set_indices=[1, 2]) + 0.03 * NonAmbiguousMaskLoss(BCELoss())"
3
+ # Validation Loss
4
+ test_criterion: "ExcludeTopNPercentPixelLoss(FactoredGeometryScaleRegr3DPlusNormalGMLoss(RobustRegressionLoss(alpha=0.5, scaling_c=0.05), norm_mode='avg_dis', depth_type_for_loss='depth_along_ray', loss_in_log=True, flatten_across_image_only=True, compute_absolute_pose_loss=False, compute_pairwise_relative_pose_loss=True, convert_predictions_to_view0_frame=True, compute_world_frame_points_loss=True, apply_normal_and_gm_loss_to_synthetic_data_only=True, cam_frame_points_loss_weight=0.1, depth_loss_weight=0.1, ray_directions_loss_weight=0.1, pose_quats_loss_weight=0.1, pose_trans_loss_weight=0.1, scale_loss_weight=0.1, world_frame_points_loss_weight=1, normal_loss_weight=0.3, gm_loss_weight=0.3), top_n_percent=5, apply_to_real_data_only=True, loss_set_indices=[0, 1, 2]) + 0.03 * NonAmbiguousMaskLoss(BCELoss())"
configs/loss/pi3_loss.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # Training Loss
2
+ train_criterion: "ExcludeTopNPercentPixelLoss(FactoredGeometryRegr3DPlusNormalGMLoss(RobustRegressionLoss(alpha=0.5, scaling_c=0.05), norm_mode='avg_dis', depth_type_for_loss='depth_z', loss_in_log=True, flatten_across_image_only=True, compute_pairwise_relative_pose_loss=True, convert_predictions_to_view0_frame=True, compute_world_frame_points_loss=True, apply_normal_and_gm_loss_to_synthetic_data_only=True, normal_loss_weight=3.0, gm_loss_weight=3.0), top_n_percent=5, apply_to_real_data_only=True, loss_set_indices=[0, 1, 2])"
3
+ # Validation Loss
4
+ test_criterion: "ExcludeTopNPercentPixelLoss(FactoredGeometryRegr3DPlusNormalGMLoss(RobustRegressionLoss(alpha=0.5, scaling_c=0.05), norm_mode='avg_dis', depth_type_for_loss='depth_z', loss_in_log=True, flatten_across_image_only=True, compute_pairwise_relative_pose_loss=True, convert_predictions_to_view0_frame=True, compute_world_frame_points_loss=True, apply_normal_and_gm_loss_to_synthetic_data_only=True, normal_loss_weight=3.0, gm_loss_weight=3.0), top_n_percent=5, apply_to_real_data_only=True, loss_set_indices=[0, 1, 2])"
configs/machine/aws.yaml CHANGED
@@ -2,12 +2,14 @@ defaults:
2
  - default
3
 
4
  # Root directory containing all datasets
5
- root_data_dir: "/fsx/xrtech/data"
6
  # Dataset metadata directory
7
- mapanything_dataset_metadata_dir: "/fsx/nkeetha/mapanything_dataset_metadata"
8
  # Root directory containing pretrained checkpoints for custom models
9
- root_pretrained_checkpoints_dir: "/fsx/nkeetha/mapanything_checkpoints"
10
  # Root directory to log experiments
11
- root_experiments_dir: "/fsx/nkeetha/experiments"
12
  # Root directory containing UniCeption pretrained checkpoints
13
- root_uniception_pretrained_checkpoints_dir: "/fsx/nkeetha/uniception_checkpoints"
 
 
 
2
  - default
3
 
4
  # Root directory containing all datasets
5
+ root_data_dir: "/ai4rl/fsx/xrtech/data"
6
  # Dataset metadata directory
7
+ mapanything_dataset_metadata_dir: "/ai4rl/fsx/nkeetha/mapanything_dataset_metadata"
8
  # Root directory containing pretrained checkpoints for custom models
9
+ root_pretrained_checkpoints_dir: "/ai4rl/fsx/nkeetha/mapanything_checkpoints"
10
  # Root directory to log experiments
11
+ root_experiments_dir: "/ai4rl/fsx/nkeetha/experiments"
12
  # Root directory containing UniCeption pretrained checkpoints
13
+ root_uniception_pretrained_checkpoints_dir: "/ai4rl/fsx/nkeetha/uniception_checkpoints"
14
+ # Root directory containing external benchmark data
15
+ external_benchmark_data_root_data_dir: "/ai4rl/fsx/xrtech/external_benchmark_data/rmvd_mvs_benchmark/rmvd_test_data"
configs/machine/default.yaml CHANGED
@@ -8,3 +8,5 @@ root_pretrained_checkpoints_dir: ???
8
  root_experiments_dir: ???
9
  # Root directory containing UniCeption pretrained checkpoints
10
  root_uniception_pretrained_checkpoints_dir: ???
 
 
 
8
  root_experiments_dir: ???
9
  # Root directory containing UniCeption pretrained checkpoints
10
  root_uniception_pretrained_checkpoints_dir: ???
11
+ # Root directory containing external benchmark data
12
+ external_benchmark_data_root_data_dir: ???
configs/machine/psc.yaml CHANGED
@@ -6,8 +6,10 @@ root_data_dir: "/ocean/projects/cis220039p/shared/datasets"
6
  # Dataset metadata directory
7
  mapanything_dataset_metadata_dir: "/ocean/projects/cis220039p/shared/mapanything_dataset_metadata"
8
  # Root directory containing pretrained checkpoints for custom models
9
- root_pretrained_checkpoints_dir: "/ocean/projects/cis220039p/nkeetha/code/AnyMap/checkpoints"
10
  # Root directory to log experiments
11
- root_experiments_dir: "/ocean/projects/cis220039p/nkeetha/experiments"
12
  # Root directory containing UniCeption pretrained checkpoints
13
- root_uniception_pretrained_checkpoints_dir: "/ocean/projects/cis220039p/nkeetha/code/AnyMap/UniCeption/checkpoints"
 
 
 
6
  # Dataset metadata directory
7
  mapanything_dataset_metadata_dir: "/ocean/projects/cis220039p/shared/mapanything_dataset_metadata"
8
  # Root directory containing pretrained checkpoints for custom models
9
+ root_pretrained_checkpoints_dir: "/jet/home/yzhang25/mapanything/checkpoints"
10
  # Root directory to log experiments
11
+ root_experiments_dir: "/jet/home/yzhang25/mapanything/outputs"
12
  # Root directory containing UniCeption pretrained checkpoints
13
+ root_uniception_pretrained_checkpoints_dir: "/ocean/projects/cis220039p/shared/uniception/checkpoints/"
14
+ # Root directory containing external benchmark data
15
+ external_benchmark_data_root_data_dir: "/jet/home/yzhang25/mapanything/benchmarking/rmvd_mvs_benchmark/rmvd_test_data"
configs/machine/psc_yuchen.yaml DELETED
@@ -1,13 +0,0 @@
1
- defaults:
2
- - default
3
-
4
- # Root directory containing all datasets
5
- root_data_dir: "/ocean/projects/cis220039p/shared/datasets"
6
- # Dataset metadata directory
7
- mapanything_dataset_metadata_dir: "/ocean/projects/cis220039p/shared/mapanything_dataset_metadata"
8
- # Root directory containing pretrained checkpoints for custom models
9
- root_pretrained_checkpoints_dir: "/jet/home/yzhang25/AnyMap/checkpoints"
10
- # Root directory to log experiments
11
- root_experiments_dir: "/jet/home/yzhang25/AnyMap/outputs"
12
- # Root directory containing UniCeption pretrained checkpoints
13
- root_uniception_pretrained_checkpoints_dir: "/ocean/projects/cis220039p/shared/uniception/checkpoints/"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/machine/xri_dgx.yaml CHANGED
@@ -6,8 +6,10 @@ root_data_dir: "/mnt/xri_mapsresearch/data/nkeetha"
6
  # Dataset metadata directory
7
  mapanything_dataset_metadata_dir: "/mnt/xri_mapsresearch/data/nkeetha/mapanything_dataset_metadata"
8
  # Root directory containing pretrained checkpoints for custom models
9
- root_pretrained_checkpoints_dir: "/mnt/xri_mapsresearch/code/nkeetha/AnyMap/checkpoints"
10
  # Root directory to log experiments
11
  root_experiments_dir: "/mnt/xri_mapsresearch/experiments/nkeetha"
12
  # Root directory containing UniCeption pretrained checkpoints
13
- root_uniception_pretrained_checkpoints_dir: "/mnt/xri_mapsresearch/code/nkeetha/AnyMap/UniCeption/checkpoints"
 
 
 
6
  # Dataset metadata directory
7
  mapanything_dataset_metadata_dir: "/mnt/xri_mapsresearch/data/nkeetha/mapanything_dataset_metadata"
8
  # Root directory containing pretrained checkpoints for custom models
9
+ root_pretrained_checkpoints_dir: "/mnt/xri_mapsresearch/code/nkeetha/mapanything/checkpoints"
10
  # Root directory to log experiments
11
  root_experiments_dir: "/mnt/xri_mapsresearch/experiments/nkeetha"
12
  # Root directory containing UniCeption pretrained checkpoints
13
+ root_uniception_pretrained_checkpoints_dir: "/mnt/xri_mapsresearch/code/nkeetha/mapanything/UniCeption/checkpoints"
14
+ # Root directory containing external benchmark data
15
+ external_benchmark_data_root_data_dir: "/mnt/xri_mapsresearch/data/nkeetha/rmvd_mvs_benchmark/rmvd_test_data"
configs/model/da3.yaml ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # String for model factory
2
+ model_str: "da3"
3
+ # Model config
4
+ model_config:
5
+ name: "da3"
6
+ # HF model string
7
+ hf_model_name: "depth-anything/DA3-GIANT"
8
+ # Image Normalization Type
9
+ data_norm_type: "dinov2"
10
+ # DA3 checkpoint is already loaded in the inference wrapper
11
+ pretrained: null
12
+ # Torch hub force reload
13
+ torch_hub_force_reload: False
configs/model/da3_nested.yaml ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # String for model factory
2
+ model_str: "da3"
3
+ # Model config
4
+ model_config:
5
+ name: "da3_nested"
6
+ # HF model string
7
+ hf_model_name: "depth-anything/DA3NESTED-GIANT-LARGE"
8
+ # Image Normalization Type
9
+ data_norm_type: "dinov2"
10
+ # DA3 checkpoint is already loaded in the inference wrapper
11
+ pretrained: null
12
+ # Torch hub force reload
13
+ torch_hub_force_reload: False
configs/model/encoder/dinov2_giant_24_layers.yaml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # UniCeption encoder string used for selecting encoder class (python3 -m uniception.models.encoders.list)
2
+ encoder_str: "dinov2"
3
+ # Name of the encoder
4
+ name: "dinov2_giant_24_layers"
5
+ # Data normalization type
6
+ data_norm_type: "dinov2"
7
+ # ViT size
8
+ size: "giant"
9
+ # Registers
10
+ with_registers: False
11
+ # Flag to indicate whether model class uses torch hub
12
+ uses_torch_hub: True
13
+ # Flag to indicate whether to use gradient checkpointing for encoder
14
+ gradient_checkpointing: False
15
+ # Turn off final normalization so that the features can be passed to DINOv2 init multi-view transformer
16
+ norm_returned_features: False
17
+ # Keep only the first 24 layers of DINOv2 ViT-G (other 16 layers are in multi-view transformer)
18
+ keep_first_n_layers: 24
configs/model/info_sharing/aat_ifr_16_layers_dinov2_vitg_init.yaml ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Model type (Options: ["cross_attention", "global_attention", "alternating_attention"])
2
+ model_type: "alternating_attention"
3
+ # Model class type (Options: ["no_intermediate_features", "intermediate_features"])
4
+ model_return_type: "intermediate_features"
5
+ # Custom positional encoding (Options: ["RoPEfreq"], Callable Function, null)
6
+ custom_positional_encoding: null
7
+ # Module arguments
8
+ module_args:
9
+ # Name of the info sharing module
10
+ name: "aat_16_layers_dinov2_vitg_init"
11
+ # Indices of the intermediate features to be shared (indices start from 0)
12
+ indices: [7, 11]
13
+ # Normalize intermediate features
14
+ norm_intermediate: True
15
+ # Size string
16
+ size: "16_layers"
17
+ # Depth (this includes both frame-wise and gloabl attention layers)
18
+ depth: 16
19
+ # Distinguish Reference and Non-Reference Views
20
+ distinguish_ref_and_non_ref_views: True
21
+ # Flag to indicate whether to use gradient checkpointing
22
+ gradient_checkpointing: False
23
+ # Feature dim (similar to ViT-Giant)
24
+ dim: 1536
25
+ # Number of heads (similar to ViT-Giant)
26
+ num_heads: 24
27
+ # Set transformer parameters similar to DINOv2
28
+ mlp_ratio: 4
29
+ qkv_bias: True
30
+ qk_norm: False
31
+ init_values: 1e-5
32
+ # Load layers 24 to 40 from DINOv2 ViT-G as init
33
+ pretrained_checkpoint_path: '${machine.root_pretrained_checkpoints_dir}/aat_init_w_dinov2_vitg_layers_24_to_40.pth'
configs/model/info_sharing/aat_ifr_16_layers_vitg_dim.yaml ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Model type (Options: ["cross_attention", "global_attention", "alternating_attention"])
2
+ model_type: "alternating_attention"
3
+ # Model class type (Options: ["no_intermediate_features", "intermediate_features"])
4
+ model_return_type: "intermediate_features"
5
+ # Custom positional encoding (Options: ["RoPEfreq"], Callable Function, null)
6
+ custom_positional_encoding: null
7
+ # Module arguments
8
+ module_args:
9
+ # Name of the info sharing module
10
+ name: "aat_16_layers_vitg_dim_ifr"
11
+ # Indices of the intermediate features to be shared (indices start from 0)
12
+ indices: [7, 11]
13
+ # Normalize intermediate features
14
+ norm_intermediate: True
15
+ # Size string
16
+ size: "16_layers"
17
+ # Depth (this includes both frame-wise and gloabl attention layers)
18
+ depth: 16
19
+ # Distinguish Reference and Non-Reference Views
20
+ distinguish_ref_and_non_ref_views: True
21
+ # Flag to indicate whether to use gradient checkpointing
22
+ gradient_checkpointing: False
23
+ # Feature dim (similar to ViT-Giant)
24
+ dim: 1536
25
+ # Number of heads (similar to ViT-Giant)
26
+ num_heads: 24
27
+ # Set transformer parameters similar to DINOv2
28
+ mlp_ratio: 4
29
+ qkv_bias: True
30
+ qk_norm: False
31
+ init_values: 1e-5
configs/model/mapanything.yaml CHANGED
@@ -1,7 +1,7 @@
1
  defaults:
2
  - default
3
- - encoder: dinov2_large
4
- - info_sharing: aat_ifr_24_layers
5
  - pred_head: dpt_pose_scale
6
  - task: images_only
7
 
@@ -14,5 +14,7 @@ model_config:
14
  info_sharing_config: ${model.info_sharing}
15
  pred_head_config: ${model.pred_head}
16
  geometric_input_config: ${model.task}
 
 
17
  # Image Normalization Type
18
  data_norm_type: ${model.encoder.data_norm_type}
 
1
  defaults:
2
  - default
3
+ - encoder: dinov2_giant_24_layers
4
+ - info_sharing: aat_ifr_16_layers_vitg_dim
5
  - pred_head: dpt_pose_scale
6
  - task: images_only
7
 
 
14
  info_sharing_config: ${model.info_sharing}
15
  pred_head_config: ${model.pred_head}
16
  geometric_input_config: ${model.task}
17
+ use_register_tokens_from_encoder: True
18
+ info_sharing_mlp_layer_str: "swiglufused"
19
  # Image Normalization Type
20
  data_norm_type: ${model.encoder.data_norm_type}
configs/model/{mapanything_large_inference.yaml → mapanything_dino_init.yaml} RENAMED
@@ -1,7 +1,7 @@
1
  defaults:
2
  - default
3
- - encoder: dinov2_large
4
- - info_sharing: aat_ifr_48_layers_escaling
5
  - pred_head: dpt_pose_scale
6
  - task: images_only
7
 
@@ -14,5 +14,7 @@ model_config:
14
  info_sharing_config: ${model.info_sharing}
15
  pred_head_config: ${model.pred_head}
16
  geometric_input_config: ${model.task}
 
 
17
  # Image Normalization Type
18
  data_norm_type: ${model.encoder.data_norm_type}
 
1
  defaults:
2
  - default
3
+ - encoder: dinov2_giant_24_layers
4
+ - info_sharing: aat_ifr_16_layers_dinov2_vitg_init
5
  - pred_head: dpt_pose_scale
6
  - task: images_only
7
 
 
14
  info_sharing_config: ${model.info_sharing}
15
  pred_head_config: ${model.pred_head}
16
  geometric_input_config: ${model.task}
17
+ use_register_tokens_from_encoder: True
18
+ info_sharing_mlp_layer_str: "swiglufused"
19
  # Image Normalization Type
20
  data_norm_type: ${model.encoder.data_norm_type}
configs/model/mapanything_inference.yaml DELETED
@@ -1,18 +0,0 @@
1
- defaults:
2
- - default
3
- - encoder: dinov2_large
4
- - info_sharing: aat_ifr_24_layers_escaling
5
- - pred_head: dpt_pose_scale
6
- - task: images_only
7
-
8
- # String for model factory
9
- model_str: "mapanything"
10
- # Model config
11
- model_config:
12
- name: "mapanything"
13
- encoder_config: ${model.encoder}
14
- info_sharing_config: ${model.info_sharing}
15
- pred_head_config: ${model.pred_head}
16
- geometric_input_config: ${model.task}
17
- # Image Normalization Type
18
- data_norm_type: ${model.encoder.data_norm_type}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/model/{mapanything_large.yaml → mapanything_v1.yaml} RENAMED
@@ -1,7 +1,7 @@
1
  defaults:
2
  - default
3
  - encoder: dinov2_large
4
- - info_sharing: aat_ifr_48_layers
5
  - pred_head: dpt_pose_scale
6
  - task: images_only
7
 
 
1
  defaults:
2
  - default
3
  - encoder: dinov2_large
4
+ - info_sharing: aat_ifr_24_layers
5
  - pred_head: dpt_pose_scale
6
  - task: images_only
7
 
configs/rmvd_benchmark.yaml CHANGED
@@ -6,7 +6,7 @@ defaults:
6
 
7
  # Path Settings
8
  output_dir: ${hydra:run.dir}
9
- root_data_dir: ${machine.root_data_dir}
10
  mapanything_dataset_metadata_dir: ${machine.mapanything_dataset_metadata_dir}
11
  root_pretrained_checkpoints_dir: ${machine.root_pretrained_checkpoints_dir}
12
  root_experiments_dir: ${machine.root_experiments_dir}
 
6
 
7
  # Path Settings
8
  output_dir: ${hydra:run.dir}
9
+ external_benchmark_data_root_data_dir: ${machine.external_benchmark_data_root_data_dir}
10
  mapanything_dataset_metadata_dir: ${machine.mapanything_dataset_metadata_dir}
11
  root_pretrained_checkpoints_dir: ${machine.root_pretrained_checkpoints_dir}
12
  root_experiments_dir: ${machine.root_experiments_dir}
configs/train_params/moge2_finetune.yaml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ defaults:
2
+ - default
3
+
4
+ # Use lower lr for finetuning
5
+ lr: 1e-05
6
+ min_lr: 1e-07
configs/train_params/pi3_finetune.yaml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ defaults:
2
+ - default
3
+
4
+ # Use lower lr for finetuning
5
+ lr: 1e-05
6
+ min_lr: 1e-07
7
+
8
+ # Optimizer parameters specific to submodules
9
+ submodule_configs:
10
+ # DINOv2
11
+ model.encoder:
12
+ lr: 5e-07
13
+ min_lr: 5e-09
14
+ warmup_epochs: ${train_params.warmup_epochs}
15
+ weight_decay: ${train_params.weight_decay}
16
+ schedule_type: ${train_params.schedule_type}
configs/train_params/vggt_finetune.yaml CHANGED
@@ -1,7 +1,7 @@
1
  defaults:
2
  - default
3
 
4
- # Use 10x lower lr for finetuning
5
  lr: 1e-05
6
  min_lr: 1e-07
7
 
 
1
  defaults:
2
  - default
3
 
4
+ # Use lower lr for finetuning
5
  lr: 1e-05
6
  min_lr: 1e-07
7
 
mapanything/datasets/__init__.py CHANGED
@@ -1,3 +1,8 @@
 
 
 
 
 
1
  """
2
  MapAnything Datasets
3
  """
@@ -5,14 +10,10 @@ MapAnything Datasets
5
  import torch
6
 
7
  from mapanything.datasets.wai.ase import ASEWAI # noqa
8
- from mapanything.datasets.wai.bedlam import BedlamWAI # noqa
9
  from mapanything.datasets.wai.blendedmvs import BlendedMVSWAI # noqa
10
  from mapanything.datasets.wai.dl3dv import DL3DVWAI # noqa
11
- from mapanything.datasets.wai.dtu import DTUWAI # noqa
12
  from mapanything.datasets.wai.dynamicreplica import DynamicReplicaWAI # noqa
13
  from mapanything.datasets.wai.eth3d import ETH3DWAI # noqa
14
- from mapanything.datasets.wai.gta_sfm import GTASfMWAI # noqa
15
- from mapanything.datasets.wai.matrixcity import MatrixCityWAI # noqa
16
  from mapanything.datasets.wai.megadepth import MegaDepthWAI # noqa
17
  from mapanything.datasets.wai.mpsd import MPSDWAI # noqa
18
  from mapanything.datasets.wai.mvs_synth import MVSSynthWAI # noqa
@@ -20,10 +21,8 @@ from mapanything.datasets.wai.paralleldomain4d import ParallelDomain4DWAI # noq
20
  from mapanything.datasets.wai.sailvos3d import SAILVOS3DWAI # noqa
21
  from mapanything.datasets.wai.scannetpp import ScanNetPPWAI # noqa
22
  from mapanything.datasets.wai.spring import SpringWAI # noqa
23
- from mapanything.datasets.wai.structured3d import Structured3DWAI # noqa
24
  from mapanything.datasets.wai.tav2_wb import TartanAirV2WBWAI # noqa
25
  from mapanything.datasets.wai.unrealstereo4k import UnrealStereo4KWAI # noqa
26
- from mapanything.datasets.wai.xrooms import XRoomsWAI # noqa
27
  from mapanything.utils.train_tools import get_rank, get_world_size
28
 
29
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ #
3
+ # This source code is licensed under the Apache License, Version 2.0
4
+ # found in the LICENSE file in the root directory of this source tree.
5
+
6
  """
7
  MapAnything Datasets
8
  """
 
10
  import torch
11
 
12
  from mapanything.datasets.wai.ase import ASEWAI # noqa
 
13
  from mapanything.datasets.wai.blendedmvs import BlendedMVSWAI # noqa
14
  from mapanything.datasets.wai.dl3dv import DL3DVWAI # noqa
 
15
  from mapanything.datasets.wai.dynamicreplica import DynamicReplicaWAI # noqa
16
  from mapanything.datasets.wai.eth3d import ETH3DWAI # noqa
 
 
17
  from mapanything.datasets.wai.megadepth import MegaDepthWAI # noqa
18
  from mapanything.datasets.wai.mpsd import MPSDWAI # noqa
19
  from mapanything.datasets.wai.mvs_synth import MVSSynthWAI # noqa
 
21
  from mapanything.datasets.wai.sailvos3d import SAILVOS3DWAI # noqa
22
  from mapanything.datasets.wai.scannetpp import ScanNetPPWAI # noqa
23
  from mapanything.datasets.wai.spring import SpringWAI # noqa
 
24
  from mapanything.datasets.wai.tav2_wb import TartanAirV2WBWAI # noqa
25
  from mapanything.datasets.wai.unrealstereo4k import UnrealStereo4KWAI # noqa
 
26
  from mapanything.utils.train_tools import get_rank, get_world_size
27
 
28
 
mapanything/datasets/base/base_dataset.py CHANGED
@@ -1,3 +1,8 @@
 
 
 
 
 
1
  """
2
  Base class for MapAnything datasets.
3
  """
@@ -314,7 +319,7 @@ class BaseDataset(EasyDataset):
314
  use_bidirectional_covis=True,
315
  ):
316
  """
317
- Randomly samples S indices from an N x N covisbility matrix by forming adjacency edges such that the resulting subgraph (given by the indices) is connected.
318
  If the current node has no new unvisited neighbors, backtracking occurs.
319
  Retries with different starting indices if the desired number of samples is not reached, excluding previously visited components.
320
 
@@ -569,7 +574,7 @@ class BaseDataset(EasyDataset):
569
  if "non_ambiguous_mask" in view:
570
  assert view["depthmap"].shape == view["non_ambiguous_mask"].shape
571
 
572
- # Expand the last dimennsion of the depthmap
573
  view["depthmap"] = view["depthmap"][..., None]
574
 
575
  # Append RNG state to the views, this allows to check whether the RNG is in the same state each time
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ #
3
+ # This source code is licensed under the Apache License, Version 2.0
4
+ # found in the LICENSE file in the root directory of this source tree.
5
+
6
  """
7
  Base class for MapAnything datasets.
8
  """
 
319
  use_bidirectional_covis=True,
320
  ):
321
  """
322
+ Randomly samples S indices from an N x N covisibility matrix by forming adjacency edges such that the resulting subgraph (given by the indices) is connected.
323
  If the current node has no new unvisited neighbors, backtracking occurs.
324
  Retries with different starting indices if the desired number of samples is not reached, excluding previously visited components.
325
 
 
574
  if "non_ambiguous_mask" in view:
575
  assert view["depthmap"].shape == view["non_ambiguous_mask"].shape
576
 
577
+ # Expand the last dimension of the depthmap
578
  view["depthmap"] = view["depthmap"][..., None]
579
 
580
  # Append RNG state to the views, this allows to check whether the RNG is in the same state each time