Spaces:
Sleeping
Sleeping
| import json | |
| import shlex | |
| import subprocess | |
| import gradio as gr | |
| import numpy as np | |
| import requests | |
| import timm | |
| import torch | |
| import torch.nn.functional as F | |
| from torchaudio.compliance import kaldi | |
| TAG = "gaunernst/vit_base_patch16_1024_128.audiomae_as2m_ft_as20k" | |
| MODEL = timm.create_model(f"hf_hub:{TAG}", pretrained=True).eval() | |
| LABEL_URL = "https://huggingface.co/datasets/huggingface/label-files/raw/main/audioset-id2label.json" | |
| AUDIOSET_LABELS = list(json.loads(requests.get(LABEL_URL).content).values()) | |
| SAMPLING_RATE = 16_000 | |
| MEAN = -4.2677393 | |
| STD = 4.5689974 | |
| def resample(x: np.ndarray, sr: int): | |
| cmd = f"ffmpeg -ar {sr} -f s16le -i - -ar {SAMPLING_RATE} -f f32le -" | |
| proc = subprocess.run(shlex.split(cmd), capture_output=True, input=x.tobytes()) | |
| return np.frombuffer(proc.stdout, dtype=np.float32) | |
| def preprocess(x: torch.Tensor): | |
| x = x - x.mean() | |
| melspec = kaldi.fbank(x.unsqueeze(0), htk_compat=True, window_type="hanning", num_mel_bins=128) | |
| if melspec.shape[0] < 1024: | |
| melspec = F.pad(melspec, (0, 0, 0, 1024 - melspec.shape[0])) | |
| else: | |
| melspec = melspec[:1024] | |
| melspec = (melspec - MEAN) / (STD * 2) | |
| return melspec.view(1, 1, 1024, 128) | |
| def predict(audio, start): | |
| sr, x = audio | |
| if x.shape[0] < start * sr: | |
| raise gr.Error(f"`start` ({start}) must be smaller than audio duration ({x.shape[0] / sr:.0f}s)") | |
| x = resample(x[int(start * sr) :], sr) | |
| x = torch.from_numpy(x) | |
| with torch.inference_mode(): | |
| logits = MODEL(preprocess(x)).squeeze(0) | |
| topk_probs, topk_classes = logits.sigmoid().topk(10) | |
| return [[AUDIOSET_LABELS[cls], prob.item() * 100] for cls, prob in zip(topk_classes, topk_probs)] | |
| gr.Interface( | |
| fn=predict, | |
| inputs=["audio", "number"], | |
| outputs="dataframe", | |
| examples=[["LS_female_1462-170138-0008.flac", 0], ["LS_male_3170-137482-0005.flac", 0]], | |
| ).launch() | |