from src.model import tdc_prompts, txgemma_predict def predict_kiba_score(drug_smile, amino_acid): TDC_PROMPT = tdc_prompts["KIBA"].replace("{Drug SMILES}", drug_smile).replace("{Target amino acid sequence}", amino_acid) response = txgemma_predict(TDC_PROMPT) return response.split("Answer:")[1].strip() def predict(task, drug_smile, amino_acid=None): if task == "KIBA Score": if amino_acid is None: raise ValueError("amino_acid parameter is required for KIBA task") kiba_score = predict_kiba_score(drug_smile, amino_acid) return f"{kiba_score} Binding Affinity On Scale of 0-1000" if task == "Skin Reaction": TDC_PROMPT = tdc_prompts["Skin_Reaction"].replace("{Drug SMILES}", drug_smile) response = txgemma_predict(TDC_PROMPT).split("Answer:")[1].strip() if "(A)" in response: response = f"{drug_smile} does not cause a skin reaction!" elif "(B)" in response: response = f"{drug_smile} causes a skin reaction!" return response if task == "Liver Safety": TDC_PROMPT = tdc_prompts["DILI"].replace("{Drug SMILES}", drug_smile) response = txgemma_predict(TDC_PROMPT).split("Answer:")[1].strip() if "(A)" in response: response = f"{drug_smile} does not damage a liver!" elif "(B)" in response: response = f"{drug_smile} can damage a liver!" return response