Spaces:
Sleeping
Sleeping
File size: 5,764 Bytes
c64e820 07ea386 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
---
title: LegalRagBackend
emoji: "⚖️"
colorFrom: "blue"
colorTo: "purple"
sdk: "docker"
pinned: false
app_file: main.py
---
# Legal RAG Backend
A complete FastAPI-based backend for a Legal RAG (Retrieval Augmented Generation) AI system that provides intelligent legal verdict predictions with comprehensive explanations backed by constitutional provisions, IPC sections, case law, and statutes.
## Overview
This system combines:
- **LegalBERT** fine-tuned model for verdict prediction
- **FAISS** vector search for legal document retrieval
- **Sentence Transformers** (BGE-Large) for semantic embeddings
- **Google Gemini** (optional) for generating detailed explanations
- **HuggingFace Hub** for model and dataset management
## Project Structure
```
legal-rag-backend/
│
├── main.py # FastAPI application with REST endpoints
├── model_loader.py # LegalBERT model loading and inference
├── rag_loader.py # FAISS indices and chunk loading from HuggingFace
├── rag_service.py # Core service orchestrating prediction and RAG
├── prompt_builder.py # Constructs prompts for LLM with legal context
├── utils.py # Helper utilities for chunk processing
├── requirements.txt # Python dependencies
├── Dockerfile # Container configuration
├── .gitignore # Git ignore patterns
├── README.md # This file
└── start.sh # Launch script
```
## Features
### API Endpoints
#### `GET /health`
Health check endpoint.
**Response:**
```json
{
"status": "ok"
}
```
#### `POST /predict`
Get a quick verdict prediction with confidence score.
**Request:**
```json
{
"text": "Case description and facts..."
}
```
**Response:**
```json
{
"verdict": "guilty",
"confidence": 0.8734
}
```
#### `POST /explain`
Get comprehensive legal analysis with retrieved supporting documents.
**Request:**
```json
{
"text": "Case description and facts..."
}
```
**Response:**
```json
{
"verdict": "guilty",
"confidence": 0.8734,
"explanation": "Detailed legal analysis...",
"retrievedChunks": {
"constitution": [...],
"ipc": [...],
"ipcCase": [...],
"statute": [...],
"qa": [...],
"case": [...]
}
}
```
## Installation & Setup
### Local Development
1. **Clone or create the project:**
```bash
cd /home/neginegi/Desktop/rag/legal-rag-backend
```
2. **Create a virtual environment:**
```bash
python3 -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
```
3. **Install dependencies:**
```bash
pip install -r requirements.txt
```
4. **Configure environment (optional):**
Create a `.env` file for Gemini API integration:
```bash
GEMINI_API_KEY=your_api_key_here
```
5. **Run the server:**
```bash
chmod +x start.sh
./start.sh
```
Or directly:
```bash
uvicorn main:app --host 0.0.0.0 --port 7860
```
6. **Access the API:**
- API Documentation: http://localhost:7860/docs
- Health Check: http://localhost:7860/health
### Docker Deployment
1. **Build the image:**
```bash
docker build -t legal-rag-backend .
```
2. **Run the container:**
```bash
docker run -p 7860:7860 -e GEMINI_API_KEY=your_key legal-rag-backend
```
3. **Access at:**
http://localhost:7860
## How It Works
1. **Model Loading**: On startup, the system loads:
- LegalBERT model (`negi2725/LegalBertNew`)
- 6 FAISS indices (Constitution, IPC, Cases, Statutes, QA)
- Corresponding text chunks
- BGE-Large sentence transformer for embeddings
2. **Prediction Flow**:
- Input text is tokenized and passed through LegalBERT
- Softmax applied to get "guilty" or "not guilty" verdict
- Confidence score extracted from probabilities
3. **RAG Retrieval**:
- Query text embedded using BGE-Large
- Top-K similar chunks retrieved from each FAISS index
- Results organized by legal category
4. **Explanation Generation**:
- Structured prompt built with case facts, verdict, and retrieved context
- Optional Gemini API call for natural language explanation
- Fallback to prompt template if API not configured
## Models & Datasets
- **LegalBERT Model**: `negi2725/LegalBertNew` (HuggingFace)
- **RAG Dataset**: `negi2725/dataRag` (HuggingFace)
- **Embedding Model**: `BAAI/bge-large-en-v1.5` (Sentence Transformers)
## Performance Notes
- All models and indices are preloaded at import time for fast inference
- Async endpoints ensure non-blocking I/O operations
- FAISS uses normalized L2 search for efficient similarity matching
- Typical response time: 1-3 seconds for `/explain` endpoint
## Requirements
- Python 3.10+
- 4GB+ RAM (8GB+ recommended for smooth operation)
- Internet connection for first-time model/dataset downloads
## Troubleshooting
**Models not downloading:**
- Ensure internet connectivity
- Check HuggingFace Hub access
- Models cache in `~/.cache/huggingface/`
**Out of memory:**
- Reduce batch size or top-K retrieval count
- Use CPU-only torch installation
- Consider using smaller embedding models
**Gemini API errors:**
- Verify API key in `.env` file
- System works without Gemini (returns structured prompt)
- Check API quota and rate limits
## Development
The codebase follows these conventions:
- CamelCase for variable names
- Minimal inline comments (self-documenting code)
- Async/await for all FastAPI endpoints
- Type hints for function signatures
## License
This project is for educational and research purposes.
## Support
For issues or questions, please refer to the HuggingFace model and dataset pages:
- https://huggingface.co/negi2725/LegalBertNew
- https://huggingface.co/datasets/negi2725/dataRag
|