File size: 19,076 Bytes
e406afb de7d69a e406afb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
"""
Model Service - All model operations
Handles: loading, inference, downloading, management
"""
import re
import json
import requests
import threading
from pathlib import Path
from datetime import datetime
from typing import Dict, List, Optional, Tuple, Any
from core.config import MODELS_DIR, HF_API_URL, HF_TOKEN, RECOMMENDED_QUANTS, MAX_PARAMS_BILLION
from core.state import get_state, InstalledModel
from core.logger import logger
# Lazy imports for heavy libraries
_llama_cpp = None
_transformers = None
_torch = None
def _get_llama_cpp():
"""Lazy load llama-cpp-python"""
global _llama_cpp
if _llama_cpp is None:
try:
from llama_cpp import Llama
_llama_cpp = Llama
logger.info("Models", "llama-cpp-python loaded")
except ImportError as e:
logger.warn("Models", f"llama-cpp-python not available: {e}")
_llama_cpp = False
return _llama_cpp if _llama_cpp else None
def _get_transformers():
"""Lazy load transformers"""
global _transformers, _torch
if _transformers is None:
try:
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
_transformers = {"model": AutoModelForCausalLM, "tokenizer": AutoTokenizer}
_torch = torch
logger.info("Models", "transformers loaded")
except ImportError as e:
logger.warn("Models", f"transformers not available: {e}")
_transformers = False
return _transformers if _transformers else None
class ModelService:
"""
Service for all model operations.
Uses StateManager for persistence.
"""
def __init__(self):
self._current_model = None
self._current_tokenizer = None
self._lock = threading.Lock()
self._state = get_state()
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# MODEL LISTING & INFO
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def get_installed_models(self) -> List[Dict]:
"""Get all installed models from state"""
return self._state.get_installed_models()
def get_loaded_model(self) -> Optional[Dict]:
"""Get currently loaded model info"""
model_id = self._state.get_loaded_model_id()
if model_id:
return self._state.get_model_by_id(model_id)
return None
def is_model_loaded(self) -> bool:
"""Check if any model is loaded"""
return self._current_model is not None
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# MODEL LOADING
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def load_model(self, model_id: str) -> Dict[str, Any]:
"""Load a model by ID"""
with self._lock:
logger.info("Models", f"Loading model: {model_id}")
# Get model info from state
model_info = self._state.get_model_by_id(model_id)
if not model_info:
return {"success": False, "error": f"Model not found: {model_id}"}
# Unload current model first
if self._current_model is not None:
self.unload_model()
# Load based on type
model_path = MODELS_DIR / model_info["filename"]
if not model_path.exists():
return {"success": False, "error": f"Model file not found: {model_path}"}
try:
if model_info["model_type"] == "gguf":
result = self._load_gguf(model_path)
else:
result = self._load_transformers(model_path)
if result["success"]:
self._state.set_loaded_model(model_id)
return result
except Exception as e:
logger.error("Models", f"Load failed: {e}")
return {"success": False, "error": str(e)}
def _load_gguf(self, model_path: Path) -> Dict:
"""Load GGUF model"""
Llama = _get_llama_cpp()
if Llama is None:
return {"success": False, "error": "llama-cpp-python not installed"}
try:
self._current_model = Llama(
model_path=str(model_path),
n_ctx=4096,
n_threads=4,
n_gpu_layers=0,
verbose=False
)
logger.info("Models", f"GGUF loaded: {model_path.name}")
return {"success": True, "type": "gguf", "name": model_path.stem}
except Exception as e:
return {"success": False, "error": str(e)}
def _load_transformers(self, model_path: Path) -> Dict:
"""Load transformers model"""
tf = _get_transformers()
if tf is None:
return {"success": False, "error": "transformers not installed"}
try:
self._current_tokenizer = tf["tokenizer"].from_pretrained(str(model_path))
self._current_model = tf["model"].from_pretrained(
str(model_path),
torch_dtype=_torch.float32,
device_map="cpu",
low_cpu_mem_usage=True
)
logger.info("Models", f"Transformers loaded: {model_path.name}")
return {"success": True, "type": "transformers", "name": model_path.name}
except Exception as e:
return {"success": False, "error": str(e)}
def unload_model(self):
"""Unload current model"""
with self._lock:
if self._current_model:
del self._current_model
self._current_model = None
if self._current_tokenizer:
del self._current_tokenizer
self._current_tokenizer = None
self._state.set_loaded_model(None)
import gc
gc.collect()
logger.info("Models", "Model unloaded")
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# INFERENCE
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def generate(
self,
messages: List[Dict],
max_tokens: int = 512,
temperature: float = 0.7,
top_p: float = 0.9
) -> str:
"""Generate response from loaded model"""
if self._current_model is None:
return "[Error: No model loaded]"
model_info = self.get_loaded_model()
if not model_info:
return "[Error: Model info not found]"
try:
if model_info["model_type"] == "gguf":
return self._generate_gguf(messages, max_tokens, temperature, top_p)
else:
return self._generate_transformers(messages, max_tokens, temperature, top_p)
except Exception as e:
logger.error("Models", f"Generation error: {e}")
return f"[Error: {e}]"
def _generate_gguf(self, messages: List[Dict], max_tokens: int, temperature: float, top_p: float) -> str:
"""Generate with GGUF model"""
response = self._current_model.create_chat_completion(
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=False
)
return response["choices"][0]["message"]["content"]
def _generate_transformers(self, messages: List[Dict], max_tokens: int, temperature: float, top_p: float) -> str:
"""Generate with transformers model"""
# Build prompt from messages
prompt = ""
for msg in messages:
role = msg["role"].capitalize()
prompt += f"{role}: {msg['content']}\n\n"
prompt += "Assistant: "
inputs = self._current_tokenizer(prompt, return_tensors="pt")
with _torch.no_grad():
outputs = self._current_model.generate(
inputs.input_ids,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
pad_token_id=self._current_tokenizer.eos_token_id
)
response = self._current_tokenizer.decode(
outputs[0][inputs.input_ids.shape[1]:],
skip_special_tokens=True
)
return response.strip()
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# HUGGINGFACE SEARCH & DOWNLOAD
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def search_hf_models(
self,
query: str = "",
max_params: float = MAX_PARAMS_BILLION,
limit: int = 20
) -> Tuple[List[Dict], str]:
"""
Search HuggingFace for GGUF models.
Returns: (results, status_message)
"""
logger.info("Models", f"HF search: {query}")
try:
params = {
"search": query,
"library": "gguf",
"pipeline_tag": "text-generation",
"sort": "downloads",
"direction": -1,
"limit": limit + 20 # Extra for filtering
}
headers = {"Authorization": f"Bearer {HF_TOKEN}"} if HF_TOKEN else {}
resp = requests.get(f"{HF_API_URL}/models", params=params, headers=headers, timeout=30)
resp.raise_for_status()
results = []
for m in resp.json():
model_id = m.get("id", "")
params_b = self._estimate_params(model_id)
# Filter by params
if max_params and params_b and params_b > max_params:
continue
# Check compatibility
compat = self._check_compatibility(params_b)
results.append({
"id": model_id,
"downloads": m.get("downloads", 0),
"params_b": params_b,
"est_size_gb": round(params_b * 0.55, 1) if params_b else None,
"compatibility": compat,
"is_installed": self._is_repo_installed(model_id)
})
if len(results) >= limit:
break
logger.info("Models", f"HF search found {len(results)} models")
return results, f"Found {len(results)} models"
except Exception as e:
logger.error("Models", f"HF search error: {e}")
return [], f"Search failed: {e}"
def get_hf_model_files(self, repo_id: str) -> List[Dict]:
"""Get GGUF files available for a HF model"""
logger.info("Models", f"Getting files for: {repo_id}")
try:
headers = {"Authorization": f"Bearer {HF_TOKEN}"} if HF_TOKEN else {}
resp = requests.get(f"{HF_API_URL}/models/{repo_id}", headers=headers, timeout=30)
resp.raise_for_status()
files = []
for s in resp.json().get("siblings", []):
filename = s.get("rfilename", "")
if filename.endswith(".gguf"):
quant = self._extract_quant(filename)
files.append({
"filename": filename,
"quant": quant,
"recommended": quant in RECOMMENDED_QUANTS,
"is_installed": self._state.is_model_installed(repo_id, filename)
})
# Sort: recommended first, then by name
files.sort(key=lambda x: (not x["recommended"], x["filename"]))
return files
except Exception as e:
logger.error("Models", f"Get files error: {e}")
return []
def download_model(self, repo_id: str, filename: str) -> Dict[str, Any]:
"""
Download a model from HuggingFace.
Returns: {success, message, model_id}
"""
logger.info("Models", f"Downloading: {repo_id}/{filename}")
# Check for duplicate
if self._state.is_model_installed(repo_id, filename):
return {
"success": False,
"error": f"Model already installed: {filename}",
"duplicate": True
}
try:
# Download
url = f"https://huggingface.co/{repo_id}/resolve/main/{filename}"
headers = {"Authorization": f"Bearer {HF_TOKEN}"} if HF_TOKEN else {}
dest_path = MODELS_DIR / filename
resp = requests.get(url, headers=headers, stream=True, timeout=600)
resp.raise_for_status()
total_size = int(resp.headers.get('content-length', 0))
downloaded = 0
with open(dest_path, 'wb') as f:
for chunk in resp.iter_content(chunk_size=8192):
f.write(chunk)
downloaded += len(chunk)
# Create model entry
params_b = self._estimate_params(repo_id)
model = InstalledModel(
id=Path(filename).stem,
name=self._make_display_name(repo_id, filename),
hf_repo=repo_id,
filename=filename,
model_type="gguf" if filename.endswith(".gguf") else "transformers",
size_bytes=dest_path.stat().st_size,
quant=self._extract_quant(filename),
installed_at=datetime.now().isoformat(),
params_b=params_b or 0.0
)
# Add to state
self._state.add_model(model)
size_mb = dest_path.stat().st_size / (1024 * 1024)
logger.info("Models", f"Downloaded: {filename} ({size_mb:.1f} MB)")
return {
"success": True,
"message": f"Downloaded: {filename} ({size_mb:.1f} MB)",
"model_id": model.id
}
except Exception as e:
logger.error("Models", f"Download failed: {e}")
# Clean up partial download
if dest_path.exists():
dest_path.unlink()
return {"success": False, "error": str(e)}
def delete_model(self, model_id: str) -> Dict[str, Any]:
"""Delete an installed model"""
logger.info("Models", f"Deleting: {model_id}")
model_info = self._state.get_model_by_id(model_id)
if not model_info:
return {"success": False, "error": "Model not found"}
# Unload if currently loaded
if self._state.get_loaded_model_id() == model_id:
self.unload_model()
# Delete file
try:
model_path = MODELS_DIR / model_info["filename"]
if model_path.exists():
model_path.unlink()
except Exception as e:
logger.error("Models", f"File delete error: {e}")
# Remove from state
self._state.remove_model(model_id)
return {"success": True, "message": f"Deleted: {model_info['name']}"}
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# UTILITY METHODS
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def _estimate_params(self, model_id: str) -> Optional[float]:
"""Extract parameter count from model name"""
name = model_id.lower()
patterns = [
r'(\d+\.?\d*)b(?:illion)?',
r'(\d+\.?\d*)-?b(?:illion)?',
]
for pattern in patterns:
match = re.search(pattern, name)
if match:
try:
return float(match.group(1))
except:
pass
return None
def _extract_quant(self, filename: str) -> str:
"""Extract quantization type from filename"""
quants = ["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M",
"Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0", "F16", "F32"]
upper = filename.upper()
for q in quants:
if q in upper:
return q
return "unknown"
def _check_compatibility(self, params_b: Optional[float]) -> Dict:
"""Check if model is compatible with free tier"""
if params_b is None:
return {"status": "unknown", "label": "β Unknown", "ok": True}
if params_b <= 1.5:
return {"status": "best", "label": "β
Best", "ok": True}
elif params_b <= 3:
return {"status": "good", "label": "β
Good", "ok": True}
elif params_b <= 7:
return {"status": "ok", "label": "β οΈ OK", "ok": True}
elif params_b <= 13:
return {"status": "slow", "label": "β οΈ Slow", "ok": False}
else:
return {"status": "too_large", "label": "β Too Large", "ok": False}
def _make_display_name(self, repo_id: str, filename: str) -> str:
"""Create a nice display name"""
# Extract meaningful part from repo or filename
name = Path(filename).stem
# Clean up common patterns
name = re.sub(r'[-_]gguf$', '', name, flags=re.IGNORECASE)
name = re.sub(r'[-_]q\d.*$', '', name, flags=re.IGNORECASE)
return name.replace('-', ' ').replace('_', ' ').title()
def _is_repo_installed(self, repo_id: str) -> bool:
"""Check if any model from this repo is installed"""
for m in self._state.get_installed_models():
if m["hf_repo"] == repo_id:
return True
return False
# Singleton
_model_service: Optional[ModelService] = None
def get_model_service() -> ModelService:
"""Get singleton model service"""
global _model_service
if _model_service is None:
_model_service = ModelService()
return _model_service
|