spider plot chart
Browse files- app.py +72 -12
- html/front_layout.html +32 -32
- json/app_column_config.json +19 -0
- json/col_names_map.json +7 -1
- src/app_utils.py +128 -3
app.py
CHANGED
|
@@ -88,6 +88,9 @@ with open(JSON_PATH / "app_column_config.json", "r") as f:
|
|
| 88 |
with open(JSON_PATH / "app_column_config.json", "r") as f:
|
| 89 |
caracteristicas_etf = json.load(f)["cols_tabla_etfs"]
|
| 90 |
|
|
|
|
|
|
|
|
|
|
| 91 |
with open(JSON_PATH / "cat_cols.json", "r") as f:
|
| 92 |
cat_cols = json.load(f)["cat_cols"]
|
| 93 |
|
|
@@ -367,28 +370,52 @@ with gr.Blocks(title="Swift Stock Screener, by Reddgr") as front:
|
|
| 367 |
)
|
| 368 |
|
| 369 |
# ---- TAB 2: COMPANY --------------------------------------------------
|
|
|
|
| 370 |
with gr.TabItem("Company details")as company_tab: ####
|
| 371 |
company_title = gr.Markdown(f"## {init_name}" if init_name else "### Company Name")
|
| 372 |
company_summary = gr.Markdown(init_summary)
|
| 373 |
company_details = gr.Dataframe(value=init_details, interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 374 |
|
| 375 |
def on_company_tab(evt: gr.SelectData):
|
| 376 |
global selected_ticker
|
| 377 |
if evt.selected and selected_ticker:
|
| 378 |
-
maestro_details = maestro.copy()
|
| 379 |
-
maestro_details.drop(columns=["embeddings"], inplace=True, errors="ignore")
|
| 380 |
name, summary, details_df = utils.get_company_info(maestro_details, selected_ticker, rename_columns)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 381 |
return (
|
| 382 |
gr.update(value=f"## {name}"),
|
| 383 |
gr.update(value=summary),
|
| 384 |
-
gr.update(value=details_df)
|
|
|
|
| 385 |
)
|
| 386 |
-
return gr.update(), gr.update(), gr.update()
|
| 387 |
|
| 388 |
company_tab.select(
|
| 389 |
on_company_tab,
|
| 390 |
inputs=[],
|
| 391 |
-
outputs=[company_title, company_summary, company_details]
|
| 392 |
)
|
| 393 |
|
| 394 |
|
|
@@ -415,6 +442,17 @@ with gr.Blocks(title="Swift Stock Screener, by Reddgr") as front:
|
|
| 415 |
name, summary, details_df = utils.get_company_info(
|
| 416 |
maestro, ticker, rename_columns
|
| 417 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 418 |
print(f"DEBUG ➡ selected ticker={ticker}, name={name}")
|
| 419 |
return (
|
| 420 |
last_result_df,
|
|
@@ -424,7 +462,8 @@ with gr.Blocks(title="Swift Stock Screener, by Reddgr") as front:
|
|
| 424 |
gr.update(selected=1), # ← change here
|
| 425 |
gr.update(value=f"## {name}"),
|
| 426 |
gr.update(value=summary),
|
| 427 |
-
gr.update(value=details_df)
|
|
|
|
| 428 |
)
|
| 429 |
|
| 430 |
|
|
@@ -433,7 +472,7 @@ with gr.Blocks(title="Swift Stock Screener, by Reddgr") as front:
|
|
| 433 |
inputs=[],
|
| 434 |
outputs=[
|
| 435 |
output_df, pagination_label, page_state, summary_display,
|
| 436 |
-
main_tabs, company_title, company_summary, company_details
|
| 437 |
]
|
| 438 |
)
|
| 439 |
|
|
@@ -450,18 +489,29 @@ with gr.Blocks(title="Swift Stock Screener, by Reddgr") as front:
|
|
| 450 |
if new_ticker != selected_ticker:
|
| 451 |
selected_ticker = new_ticker
|
| 452 |
name, summary, details_df = utils.get_company_info(maestro, selected_ticker, rename_columns)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 453 |
return (
|
| 454 |
gr.update(value=f"## {name}"),
|
| 455 |
gr.update(value=summary),
|
| 456 |
-
gr.update(value=details_df)
|
|
|
|
| 457 |
)
|
|
|
|
| 458 |
# otherwise leave components as‑is
|
| 459 |
-
return gr.update(), gr.update(), gr.update()
|
| 460 |
|
| 461 |
output_df.change(
|
| 462 |
on_df_first_row_change,
|
| 463 |
inputs=[output_df],
|
| 464 |
-
outputs=[company_title, company_summary, company_details]
|
| 465 |
)
|
| 466 |
|
| 467 |
# ---------------------- EXCLUSION FILTER TOGGLES --------------------------------
|
|
@@ -565,12 +615,22 @@ with gr.Blocks(title="Swift Stock Screener, by Reddgr") as front:
|
|
| 565 |
def on_tab_change(tab_index):
|
| 566 |
if tab_index == 1 and selected_ticker:
|
| 567 |
name, summary, details_df = utils.get_company_info(maestro, selected_ticker, rename_columns)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 568 |
return (
|
| 569 |
gr.update(value=f"## {name}"),
|
| 570 |
gr.update(value=summary),
|
| 571 |
-
gr.update(value=details_df)
|
|
|
|
| 572 |
)
|
| 573 |
-
return gr.update(), gr.update(), gr.update()
|
| 574 |
|
| 575 |
|
| 576 |
# ---------------------- FILTERS BY COLUMN ------------------ #
|
|
|
|
| 88 |
with open(JSON_PATH / "app_column_config.json", "r") as f:
|
| 89 |
caracteristicas_etf = json.load(f)["cols_tabla_etfs"]
|
| 90 |
|
| 91 |
+
with open(JSON_PATH / "app_column_config.json", "r") as f:
|
| 92 |
+
company_details_cols = json.load(f)["company_details_cols"]
|
| 93 |
+
|
| 94 |
with open(JSON_PATH / "cat_cols.json", "r") as f:
|
| 95 |
cat_cols = json.load(f)["cat_cols"]
|
| 96 |
|
|
|
|
| 370 |
)
|
| 371 |
|
| 372 |
# ---- TAB 2: COMPANY --------------------------------------------------
|
| 373 |
+
'''
|
| 374 |
with gr.TabItem("Company details")as company_tab: ####
|
| 375 |
company_title = gr.Markdown(f"## {init_name}" if init_name else "### Company Name")
|
| 376 |
company_summary = gr.Markdown(init_summary)
|
| 377 |
company_details = gr.Dataframe(value=init_details, interactive=False)
|
| 378 |
+
'''
|
| 379 |
+
|
| 380 |
+
with gr.TabItem("Company details") as company_tab:
|
| 381 |
+
with gr.Row():
|
| 382 |
+
with gr.Column(scale=1):
|
| 383 |
+
company_title = gr.Markdown(f"## {init_name}" if init_name else "### Company Name")
|
| 384 |
+
company_summary = gr.Markdown(init_summary)
|
| 385 |
+
company_details = gr.Dataframe(value=init_details, interactive=False)
|
| 386 |
+
with gr.Column(scale=1):
|
| 387 |
+
company_chart_title = gr.Markdown("## Key Metrics Radar Chart")
|
| 388 |
+
company_plot = gr.Plot(visible=True)
|
| 389 |
|
| 390 |
def on_company_tab(evt: gr.SelectData):
|
| 391 |
global selected_ticker
|
| 392 |
if evt.selected and selected_ticker:
|
| 393 |
+
maestro_details = maestro[company_details_cols].copy()
|
| 394 |
+
# maestro_details.drop(columns=["embeddings"], inplace=True, errors="ignore")
|
| 395 |
name, summary, details_df = utils.get_company_info(maestro_details, selected_ticker, rename_columns)
|
| 396 |
+
|
| 397 |
+
# Create spider plot figure
|
| 398 |
+
fig = None
|
| 399 |
+
try:
|
| 400 |
+
if not details_df.empty:
|
| 401 |
+
fig = utils.get_spider_plot_fig(details_df)
|
| 402 |
+
except Exception as e:
|
| 403 |
+
print(f"Error creating spider plot: {e}")
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
|
| 407 |
return (
|
| 408 |
gr.update(value=f"## {name}"),
|
| 409 |
gr.update(value=summary),
|
| 410 |
+
gr.update(value=details_df),
|
| 411 |
+
gr.update(value=fig)
|
| 412 |
)
|
| 413 |
+
return gr.update(), gr.update(), gr.update(), gr.update()
|
| 414 |
|
| 415 |
company_tab.select(
|
| 416 |
on_company_tab,
|
| 417 |
inputs=[],
|
| 418 |
+
outputs=[company_title, company_summary, company_details, company_plot]
|
| 419 |
)
|
| 420 |
|
| 421 |
|
|
|
|
| 442 |
name, summary, details_df = utils.get_company_info(
|
| 443 |
maestro, ticker, rename_columns
|
| 444 |
)
|
| 445 |
+
|
| 446 |
+
# Create spider plot figure
|
| 447 |
+
fig = None
|
| 448 |
+
try:
|
| 449 |
+
if not details_df.empty:
|
| 450 |
+
fig = utils.get_spider_plot_fig(details_df)
|
| 451 |
+
except Exception as e:
|
| 452 |
+
print(f"Error creating spider plot: {e}")
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
# details_df.to_pickle(ROOT / "pkl" / "details_df_test.pkl")
|
| 456 |
print(f"DEBUG ➡ selected ticker={ticker}, name={name}")
|
| 457 |
return (
|
| 458 |
last_result_df,
|
|
|
|
| 462 |
gr.update(selected=1), # ← change here
|
| 463 |
gr.update(value=f"## {name}"),
|
| 464 |
gr.update(value=summary),
|
| 465 |
+
gr.update(value=details_df),
|
| 466 |
+
gr.update(value=fig)
|
| 467 |
)
|
| 468 |
|
| 469 |
|
|
|
|
| 472 |
inputs=[],
|
| 473 |
outputs=[
|
| 474 |
output_df, pagination_label, page_state, summary_display,
|
| 475 |
+
main_tabs, company_title, company_summary, company_details, company_plot
|
| 476 |
]
|
| 477 |
)
|
| 478 |
|
|
|
|
| 489 |
if new_ticker != selected_ticker:
|
| 490 |
selected_ticker = new_ticker
|
| 491 |
name, summary, details_df = utils.get_company_info(maestro, selected_ticker, rename_columns)
|
| 492 |
+
|
| 493 |
+
# Create spider plot figure
|
| 494 |
+
fig = None
|
| 495 |
+
try:
|
| 496 |
+
if not details_df.empty:
|
| 497 |
+
fig = utils.get_spider_plot_fig(details_df)
|
| 498 |
+
except Exception as e:
|
| 499 |
+
print(f"Error creating spider plot: {e}")
|
| 500 |
+
|
| 501 |
return (
|
| 502 |
gr.update(value=f"## {name}"),
|
| 503 |
gr.update(value=summary),
|
| 504 |
+
gr.update(value=details_df),
|
| 505 |
+
gr.update(value=fig)
|
| 506 |
)
|
| 507 |
+
|
| 508 |
# otherwise leave components as‑is
|
| 509 |
+
return gr.update(), gr.update(), gr.update(), gr.update()
|
| 510 |
|
| 511 |
output_df.change(
|
| 512 |
on_df_first_row_change,
|
| 513 |
inputs=[output_df],
|
| 514 |
+
outputs=[company_title, company_summary, company_details, company_plot]
|
| 515 |
)
|
| 516 |
|
| 517 |
# ---------------------- EXCLUSION FILTER TOGGLES --------------------------------
|
|
|
|
| 615 |
def on_tab_change(tab_index):
|
| 616 |
if tab_index == 1 and selected_ticker:
|
| 617 |
name, summary, details_df = utils.get_company_info(maestro, selected_ticker, rename_columns)
|
| 618 |
+
|
| 619 |
+
# Create spider plot figure
|
| 620 |
+
fig = None
|
| 621 |
+
try:
|
| 622 |
+
if not details_df.empty:
|
| 623 |
+
fig = utils.get_spider_plot_fig(details_df)
|
| 624 |
+
except Exception as e:
|
| 625 |
+
print(f"Error creating spider plot: {e}")
|
| 626 |
+
|
| 627 |
return (
|
| 628 |
gr.update(value=f"## {name}"),
|
| 629 |
gr.update(value=summary),
|
| 630 |
+
gr.update(value=details_df),
|
| 631 |
+
gr.update(value=fig)
|
| 632 |
)
|
| 633 |
+
return gr.update(), gr.update(), gr.update(), gr.update()
|
| 634 |
|
| 635 |
|
| 636 |
# ---------------------- FILTERS BY COLUMN ------------------ #
|
html/front_layout.html
CHANGED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
Swift Stock Screener
|
| 4 |
</h1>
|
| 5 |
<p style="margin-left:10px">
|
| 6 |
-
Browse and search over 12,000 stocks. Search assets by theme, filter, sort, analyze, and get ideas to build portfolios and indices. Search by <b>ticker symbol</b> to display a
|
| 7 |
|
| 8 |
<style>
|
| 9 |
/* Botón de tamaño contenido */
|
|
@@ -21,95 +21,95 @@
|
|
| 21 |
}
|
| 22 |
|
| 23 |
/* cap the Gradio table + keep pagination row below */
|
| 24 |
-
.
|
| 25 |
max-height: calc(100vh - 300px); /* adjust px to match header+controls height */
|
| 26 |
overflow-y: auto;
|
| 27 |
}
|
| 28 |
|
| 29 |
/* Columnas filtrables (click en la celda) */
|
| 30 |
-
.
|
| 31 |
-
.
|
| 32 |
color: #1a0dab; /* link blue for light theme */
|
| 33 |
text-decoration: underline; /* underline */
|
| 34 |
cursor: pointer; /* pointer cursor */
|
| 35 |
}
|
| 36 |
|
| 37 |
@media (prefers-color-scheme: dark) {
|
| 38 |
-
.
|
| 39 |
-
.
|
| 40 |
color: #8ab4f8; /* lighter blue for dark theme */
|
| 41 |
}
|
| 42 |
}
|
| 43 |
|
| 44 |
-
.
|
| 45 |
color: red;
|
| 46 |
}
|
| 47 |
|
| 48 |
/* make the table use fixed layout so width rules apply */
|
| 49 |
-
.
|
| 50 |
table-layout: fixed;
|
| 51 |
}
|
| 52 |
|
| 53 |
/* CONFIGURACIÓN DE ANCHO DE COLUMNAS */
|
| 54 |
/* Ticker */
|
| 55 |
-
.
|
| 56 |
-
.
|
| 57 |
min-width: 40px; max-width: 100px;
|
| 58 |
overflow: hidden;
|
| 59 |
}
|
| 60 |
-
.
|
| 61 |
-
.
|
| 62 |
min-width: 75px; max-width: 220px;
|
| 63 |
overflow: hidden;
|
| 64 |
}
|
| 65 |
-
.
|
| 66 |
-
.
|
| 67 |
min-width: 70px; max-width: 160px;
|
| 68 |
overflow: hidden;
|
| 69 |
}
|
| 70 |
-
.
|
| 71 |
-
.
|
| 72 |
min-width: 70px; max-width: 200px;
|
| 73 |
overflow: hidden;
|
| 74 |
}
|
| 75 |
-
.
|
| 76 |
-
.
|
| 77 |
min-width: 60px; max-width: 80px;
|
| 78 |
overflow: hidden;
|
| 79 |
}
|
| 80 |
/* 1yr return */
|
| 81 |
-
.
|
| 82 |
-
.
|
| 83 |
min-width: 60px; max-width: 80px;
|
| 84 |
overflow: hidden;
|
| 85 |
}
|
| 86 |
-
.
|
| 87 |
-
.
|
| 88 |
min-width: 70px; max-width: 100px;
|
| 89 |
overflow: hidden;
|
| 90 |
}
|
| 91 |
-
.
|
| 92 |
-
.
|
| 93 |
min-width: 70px; max-width: 100px;
|
| 94 |
overflow: hidden;
|
| 95 |
}
|
| 96 |
-
.
|
| 97 |
-
.
|
| 98 |
min-width: 70px; max-width: 100px;
|
| 99 |
overflow: hidden;
|
| 100 |
}
|
| 101 |
-
.
|
| 102 |
-
.
|
| 103 |
min-width: 70px; max-width: 100px;
|
| 104 |
overflow: hidden;
|
| 105 |
}
|
| 106 |
-
.
|
| 107 |
-
.
|
| 108 |
min-width: 60px; max-width: 70px;
|
| 109 |
overflow: hidden;
|
| 110 |
}
|
| 111 |
-
.
|
| 112 |
-
.
|
| 113 |
min-width: 50px; max-width: 70px;
|
| 114 |
overflow: hidden;
|
| 115 |
}
|
|
|
|
| 3 |
Swift Stock Screener
|
| 4 |
</h1>
|
| 5 |
<p style="margin-left:10px">
|
| 6 |
+
Browse and search over 12,000 stocks. Search assets by theme, filter, sort, analyze, and get ideas to build portfolios and indices. Search by <b>ticker symbol</b> to display a list of ranked related companies. Enter any keyword in <b>thematic search</b> to search by theme. Click on <u>country names</u> or <u>GICS sectors</u> for strict filtering. <b>Reset</b> the search and <b>sort</b> all assets by any of the displayed metrics.
|
| 7 |
|
| 8 |
<style>
|
| 9 |
/* Botón de tamaño contenido */
|
|
|
|
| 21 |
}
|
| 22 |
|
| 23 |
/* cap the Gradio table + keep pagination row below */
|
| 24 |
+
.df-cells .dataframe-container {
|
| 25 |
max-height: calc(100vh - 300px); /* adjust px to match header+controls height */
|
| 26 |
overflow-y: auto;
|
| 27 |
}
|
| 28 |
|
| 29 |
/* Columnas filtrables (click en la celda) */
|
| 30 |
+
.df-cells tbody td:nth-child(3),
|
| 31 |
+
.df-cells tbody td:nth-child(4) {
|
| 32 |
color: #1a0dab; /* link blue for light theme */
|
| 33 |
text-decoration: underline; /* underline */
|
| 34 |
cursor: pointer; /* pointer cursor */
|
| 35 |
}
|
| 36 |
|
| 37 |
@media (prefers-color-scheme: dark) {
|
| 38 |
+
.df-cells tbody td:nth-child(3),
|
| 39 |
+
.df-cells tbody td:nth-child(4) {
|
| 40 |
color: #8ab4f8; /* lighter blue for dark theme */
|
| 41 |
}
|
| 42 |
}
|
| 43 |
|
| 44 |
+
.df-cells span.negative-value {
|
| 45 |
color: red;
|
| 46 |
}
|
| 47 |
|
| 48 |
/* make the table use fixed layout so width rules apply */
|
| 49 |
+
.df-cells table {
|
| 50 |
table-layout: fixed;
|
| 51 |
}
|
| 52 |
|
| 53 |
/* CONFIGURACIÓN DE ANCHO DE COLUMNAS */
|
| 54 |
/* Ticker */
|
| 55 |
+
.df-cells table th:nth-child(1),
|
| 56 |
+
.df-cells table td:nth-child(1) {
|
| 57 |
min-width: 40px; max-width: 100px;
|
| 58 |
overflow: hidden;
|
| 59 |
}
|
| 60 |
+
.df-cells table th:nth-child(2),
|
| 61 |
+
.df-cells table td:nth-child(2) {
|
| 62 |
min-width: 75px; max-width: 220px;
|
| 63 |
overflow: hidden;
|
| 64 |
}
|
| 65 |
+
.df-cells table th:nth-child(3),
|
| 66 |
+
.df-cells table td:nth-child(3) {
|
| 67 |
min-width: 70px; max-width: 160px;
|
| 68 |
overflow: hidden;
|
| 69 |
}
|
| 70 |
+
.df-cells table th:nth-child(4),
|
| 71 |
+
.df-cells table td:nth-child(4) {
|
| 72 |
min-width: 70px; max-width: 200px;
|
| 73 |
overflow: hidden;
|
| 74 |
}
|
| 75 |
+
.df-cells table th:nth-child(5),
|
| 76 |
+
.df-cells table td:nth-child(5) {
|
| 77 |
min-width: 60px; max-width: 80px;
|
| 78 |
overflow: hidden;
|
| 79 |
}
|
| 80 |
/* 1yr return */
|
| 81 |
+
.df-cells table th:nth-child(6),
|
| 82 |
+
.df-cells table td:nth-child(6) {
|
| 83 |
min-width: 60px; max-width: 80px;
|
| 84 |
overflow: hidden;
|
| 85 |
}
|
| 86 |
+
.df-cells table th:nth-child(7),
|
| 87 |
+
.df-cells table td:nth-child(7) {
|
| 88 |
min-width: 70px; max-width: 100px;
|
| 89 |
overflow: hidden;
|
| 90 |
}
|
| 91 |
+
.df-cells table th:nth-child(8),
|
| 92 |
+
.df-cells table td:nth-child(8) {
|
| 93 |
min-width: 70px; max-width: 100px;
|
| 94 |
overflow: hidden;
|
| 95 |
}
|
| 96 |
+
.df-cells table th:nth-child(9),
|
| 97 |
+
.df-cells table td:nth-child(9) {
|
| 98 |
min-width: 70px; max-width: 100px;
|
| 99 |
overflow: hidden;
|
| 100 |
}
|
| 101 |
+
.df-cells table th:nth-child(10),
|
| 102 |
+
.df-cells table td:nth-child(10) {
|
| 103 |
min-width: 70px; max-width: 100px;
|
| 104 |
overflow: hidden;
|
| 105 |
}
|
| 106 |
+
.df-cells table th:nth-child(11),
|
| 107 |
+
.df-cells table td:nth-child(11) {
|
| 108 |
min-width: 60px; max-width: 70px;
|
| 109 |
overflow: hidden;
|
| 110 |
}
|
| 111 |
+
.df-cells table th:nth-child(12),
|
| 112 |
+
.df-cells table td:nth-child(12) {
|
| 113 |
min-width: 50px; max-width: 70px;
|
| 114 |
overflow: hidden;
|
| 115 |
}
|
json/app_column_config.json
CHANGED
|
@@ -67,5 +67,24 @@
|
|
| 67 |
"netExpenseRatio",
|
| 68 |
"fundInceptionDate",
|
| 69 |
"fundFamily"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
]
|
| 71 |
}
|
|
|
|
| 67 |
"netExpenseRatio",
|
| 68 |
"fundInceptionDate",
|
| 69 |
"fundFamily"
|
| 70 |
+
],
|
| 71 |
+
"company_details_cols": [
|
| 72 |
+
"ticker",
|
| 73 |
+
"security",
|
| 74 |
+
"country",
|
| 75 |
+
"sector",
|
| 76 |
+
"marketCap",
|
| 77 |
+
"ret_365",
|
| 78 |
+
"vol_365",
|
| 79 |
+
"trailingPE",
|
| 80 |
+
"revenueGrowth",
|
| 81 |
+
"dividendYield",
|
| 82 |
+
"beta",
|
| 83 |
+
"beta_norm",
|
| 84 |
+
"debtToEquity_norm",
|
| 85 |
+
"ret_365_norm",
|
| 86 |
+
"vol_365_norm",
|
| 87 |
+
"revenueGrowth_norm",
|
| 88 |
+
"trailingPE_norm"
|
| 89 |
]
|
| 90 |
}
|
json/col_names_map.json
CHANGED
|
@@ -109,6 +109,12 @@
|
|
| 109 |
"vol_365": "Volatility",
|
| 110 |
"yield": "Yield",
|
| 111 |
"ytdReturn": "YTD Return",
|
| 112 |
-
"zip": "Zip"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
}
|
| 114 |
}
|
|
|
|
| 109 |
"vol_365": "Volatility",
|
| 110 |
"yield": "Yield",
|
| 111 |
"ytdReturn": "YTD Return",
|
| 112 |
+
"zip": "Zip",
|
| 113 |
+
"beta_norm": "Beta norm.",
|
| 114 |
+
"debtToEquity_norm": "Debt to Equity norm.",
|
| 115 |
+
"ret_365_norm": "1-year Return norm.",
|
| 116 |
+
"vol_365_norm": "Volatility norm.",
|
| 117 |
+
"revenueGrowth_norm": "Revenue Growth norm.",
|
| 118 |
+
"trailingPE_norm": "Trailing PE norm."
|
| 119 |
}
|
| 120 |
}
|
src/app_utils.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
from typing import Tuple
|
| 3 |
-
|
|
|
|
| 4 |
import re
|
| 5 |
|
| 6 |
_NEG_COLOR = "red"
|
|
@@ -95,7 +96,7 @@ def get_company_info(
|
|
| 95 |
|
| 96 |
# Round _norm fields to 3 decimal places
|
| 97 |
for i, field in enumerate(df["Field"]):
|
| 98 |
-
if field.endswith("
|
| 99 |
value = df.iloc[i]["Value"]
|
| 100 |
if isinstance(value, (int, float)) and not pd.isna(value):
|
| 101 |
df.iloc[i, df.columns.get_loc("Value")] = round(value, 3)
|
|
@@ -106,7 +107,7 @@ def get_company_info(
|
|
| 106 |
numeric_indices = []
|
| 107 |
|
| 108 |
for i, (display_field, value) in enumerate(zip(df["Field"], df["Value"])):
|
| 109 |
-
if not display_field.endswith("
|
| 110 |
# Get original field name using inverse rename dictionary
|
| 111 |
orig_field = next((k for k, v in rename_columns.items() if v == display_field), display_field)
|
| 112 |
numeric_fields.append(orig_field)
|
|
@@ -127,3 +128,127 @@ def get_company_info(
|
|
| 127 |
|
| 128 |
|
| 129 |
return name, summary, df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
from typing import Tuple
|
| 3 |
+
import numpy as np
|
| 4 |
+
import plotly.graph_objects as go
|
| 5 |
import re
|
| 6 |
|
| 7 |
_NEG_COLOR = "red"
|
|
|
|
| 96 |
|
| 97 |
# Round _norm fields to 3 decimal places
|
| 98 |
for i, field in enumerate(df["Field"]):
|
| 99 |
+
if field.endswith("norm."):
|
| 100 |
value = df.iloc[i]["Value"]
|
| 101 |
if isinstance(value, (int, float)) and not pd.isna(value):
|
| 102 |
df.iloc[i, df.columns.get_loc("Value")] = round(value, 3)
|
|
|
|
| 107 |
numeric_indices = []
|
| 108 |
|
| 109 |
for i, (display_field, value) in enumerate(zip(df["Field"], df["Value"])):
|
| 110 |
+
if not display_field.endswith("norm.") and isinstance(value, (int, float)) and not pd.isna(value):
|
| 111 |
# Get original field name using inverse rename dictionary
|
| 112 |
orig_field = next((k for k, v in rename_columns.items() if v == display_field), display_field)
|
| 113 |
numeric_fields.append(orig_field)
|
|
|
|
| 128 |
|
| 129 |
|
| 130 |
return name, summary, df
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def spider_plot(df: pd.DataFrame) -> None:
|
| 134 |
+
spider_plot_cols = ['Beta norm.', 'Debt to Equity norm.', '1-year Return norm.', 'Revenue Growth norm.', 'Volatility norm.']
|
| 135 |
+
plot_data = df[df['Field'].isin(spider_plot_cols)].set_index('Field')
|
| 136 |
+
values = plot_data.loc[spider_plot_cols, 'Value'].fillna(0.5).astype(float).tolist()
|
| 137 |
+
metrics_to_invert = ['Debt to Equity norm.', 'Beta norm.', 'Volatility norm.']
|
| 138 |
+
values = [1 - v if col in metrics_to_invert else v for v, col in zip(values, spider_plot_cols)]
|
| 139 |
+
categories = [s.replace(' norm.', '').replace('1-year', '1yr').replace('Debt to Equity', 'D/E') for s in spider_plot_cols]
|
| 140 |
+
fig = go.Figure()
|
| 141 |
+
|
| 142 |
+
fig.add_trace(go.Scatterpolar(
|
| 143 |
+
r=values,
|
| 144 |
+
theta=categories,
|
| 145 |
+
fill='toself',
|
| 146 |
+
name='Company Profile'
|
| 147 |
+
))
|
| 148 |
+
|
| 149 |
+
fig.add_trace(go.Scatterpolar(
|
| 150 |
+
r=[0.5] * len(categories) + [0.5], # Append the first r value to close the loop
|
| 151 |
+
theta=categories + [categories[0]], # Append the first theta value to close the loop
|
| 152 |
+
mode='lines',
|
| 153 |
+
line=dict(dash='dot', color='grey'),
|
| 154 |
+
fill='toself', # Keep fill='none' if you only want the line
|
| 155 |
+
fillcolor='rgba(0,0,0,0)', # Make fill transparent if only line is desired
|
| 156 |
+
name='Median (0.5)'
|
| 157 |
+
))
|
| 158 |
+
|
| 159 |
+
legend_text = (
|
| 160 |
+
"<b>Quantile Scale: 0 to 1</b><br>"
|
| 161 |
+
"D/E, Beta, and Volatility:<br>"
|
| 162 |
+
"0 is highest, 1 is lowest<br>"
|
| 163 |
+
"Rev. growth and 1yr return:<br>"
|
| 164 |
+
"0 is lowest, 1 is highest<br>"
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
fig.update_layout(
|
| 168 |
+
polar=dict(
|
| 169 |
+
radialaxis=dict(
|
| 170 |
+
visible=True,
|
| 171 |
+
range=[0, 1] # Set the range from 0 to 1
|
| 172 |
+
)),
|
| 173 |
+
showlegend=True,
|
| 174 |
+
title='Normalized Company Metrics',
|
| 175 |
+
annotations=[
|
| 176 |
+
go.layout.Annotation(
|
| 177 |
+
text=legend_text,
|
| 178 |
+
align='right',
|
| 179 |
+
showarrow=False,
|
| 180 |
+
xref='paper',
|
| 181 |
+
yref='paper',
|
| 182 |
+
x=1.41,
|
| 183 |
+
y=-0.1
|
| 184 |
+
)
|
| 185 |
+
],
|
| 186 |
+
margin=dict(b=120),
|
| 187 |
+
width=600,
|
| 188 |
+
height=500
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
fig.show()
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
# Create a new function in app_utils.py that returns the figure instead of showing it
|
| 195 |
+
def get_spider_plot_fig(df: pd.DataFrame):
|
| 196 |
+
spider_plot_cols = ['Beta norm.', 'Debt to Equity norm.', '1-year Return norm.', 'Revenue Growth norm.', 'Volatility norm.']
|
| 197 |
+
plot_data = df[df['Field'].isin(spider_plot_cols)].set_index('Field')
|
| 198 |
+
values = plot_data.loc[spider_plot_cols, 'Value'].fillna(0.5).astype(float).tolist()
|
| 199 |
+
metrics_to_invert = ['Debt to Equity norm.', 'Beta norm.', 'Volatility norm.']
|
| 200 |
+
values = [1 - v if col in metrics_to_invert else v for v, col in zip(values, spider_plot_cols)]
|
| 201 |
+
categories = [s.replace(' norm.', '').replace('1-year', '1yr').replace('Debt to Equity', 'D/E') for s in spider_plot_cols]
|
| 202 |
+
company_name = df.loc[df['Field'] == 'Name', 'Value'].values[0]
|
| 203 |
+
fig = go.Figure()
|
| 204 |
+
|
| 205 |
+
fig.add_trace(go.Scatterpolar(
|
| 206 |
+
r=values,
|
| 207 |
+
theta=categories,
|
| 208 |
+
fill='toself',
|
| 209 |
+
name='Company Profile'
|
| 210 |
+
))
|
| 211 |
+
|
| 212 |
+
fig.add_trace(go.Scatterpolar(
|
| 213 |
+
r=[0.5] * len(categories) + [0.5], # Append the first r value to close the loop
|
| 214 |
+
theta=categories + [categories[0]], # Append the first theta value to close the loop
|
| 215 |
+
mode='lines',
|
| 216 |
+
line=dict(dash='dot', color='grey'),
|
| 217 |
+
fill='toself', # Keep fill='none' if you only want the line
|
| 218 |
+
fillcolor='rgba(0,0,0,0)', # Make fill transparent if only line is desired
|
| 219 |
+
name='Median (0.5)'
|
| 220 |
+
))
|
| 221 |
+
|
| 222 |
+
legend_text = (
|
| 223 |
+
"<b>Quantile Scale: 0 to 1</b><br>"
|
| 224 |
+
"D/E, Beta, and Volatility:<br>"
|
| 225 |
+
"0 is highest, 1 is lowest<br>"
|
| 226 |
+
"Rev. growth and 1yr return:<br>"
|
| 227 |
+
"0 is lowest, 1 is highest<br>"
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
fig.update_layout(
|
| 231 |
+
polar=dict(
|
| 232 |
+
radialaxis=dict(
|
| 233 |
+
visible=True,
|
| 234 |
+
range=[0, 1] # Set the range from 0 to 1
|
| 235 |
+
)),
|
| 236 |
+
showlegend=True,
|
| 237 |
+
title=f'{company_name} - Normalized Metrics',
|
| 238 |
+
annotations=[
|
| 239 |
+
go.layout.Annotation(
|
| 240 |
+
text=legend_text,
|
| 241 |
+
align='right',
|
| 242 |
+
showarrow=False,
|
| 243 |
+
xref='paper',
|
| 244 |
+
yref='paper',
|
| 245 |
+
x=1.41,
|
| 246 |
+
y=-0.1
|
| 247 |
+
)
|
| 248 |
+
],
|
| 249 |
+
margin=dict(b=120),
|
| 250 |
+
width=600,
|
| 251 |
+
height=500
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
return fig
|