Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
from sklearn import datasets
|
| 4 |
+
from sklearn.gaussian_process import GaussianProcessClassifier
|
| 5 |
+
from sklearn.gaussian_process.kernels import RBF
|
| 6 |
+
import gradio as gr
|
| 7 |
+
|
| 8 |
+
def plot_decision_boundary(kernel_type):
|
| 9 |
+
iris = datasets.load_iris()
|
| 10 |
+
X = iris.data[:, :2] # we only take the first two features.
|
| 11 |
+
y = np.array(iris.target, dtype=int)
|
| 12 |
+
|
| 13 |
+
h = 0.02 # step size in the mesh
|
| 14 |
+
|
| 15 |
+
if kernel_type == "isotropic":
|
| 16 |
+
kernel = 1.0 * RBF([1.0])
|
| 17 |
+
clf = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
| 18 |
+
elif kernel_type == "anisotropic":
|
| 19 |
+
kernel = 1.0 * RBF([1.0, 1.0])
|
| 20 |
+
clf = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
| 21 |
+
else:
|
| 22 |
+
return None
|
| 23 |
+
|
| 24 |
+
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
|
| 25 |
+
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
|
| 26 |
+
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
|
| 27 |
+
|
| 28 |
+
Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])
|
| 29 |
+
Z = Z.reshape((xx.shape[0], xx.shape[1], 3))
|
| 30 |
+
|
| 31 |
+
plt.figure(figsize=(7, 5))
|
| 32 |
+
plt.imshow(Z, extent=(x_min, x_max, y_min, y_max), origin="lower")
|
| 33 |
+
plt.scatter(X[:, 0], X[:, 1], c=np.array(["r", "g", "b"])[y], edgecolors=(0, 0, 0))
|
| 34 |
+
plt.xlabel("Sepal length")
|
| 35 |
+
plt.ylabel("Sepal width")
|
| 36 |
+
plt.xlim(xx.min(), xx.max())
|
| 37 |
+
plt.ylim(yy.min(), yy.max())
|
| 38 |
+
plt.xticks(())
|
| 39 |
+
plt.yticks(())
|
| 40 |
+
plt.title("%s, LML: %.3f" % (kernel_type.capitalize(), clf.log_marginal_likelihood(clf.kernel_.theta)))
|
| 41 |
+
plt.tight_layout()
|
| 42 |
+
return plt
|
| 43 |
+
|
| 44 |
+
kernel_select = gr.inputs.Radio(["isotropic", "anisotropic"], label="Kernel Type")
|
| 45 |
+
gr_interface = gr.Interface(fn=plot_decision_boundary, inputs=kernel_select, outputs="plot", title="Gaussian Process Classification on Iris Dataset", description="This example illustrates the predicted probability of GPC for an isotropic and anisotropic RBF kernel on a two-dimensional version for the iris-dataset. The anisotropic RBF kernel obtains slightly higher log-marginal-likelihood by assigning different length-scales to the two feature dimensions. See the original example at https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpc_iris.html")
|
| 46 |
+
gr_interface.launch()
|