Thuong Nguyen
commited on
Commit
Β·
1416389
1
Parent(s):
f3cb94f
Fix README.md with proper HF Space YAML frontmatter
Browse files
README.md
CHANGED
|
@@ -1,347 +1,77 @@
|
|
| 1 |
-
# πΏ Plant Recognition with Q&A System - Backend
|
| 2 |
-
|
| 3 |
-
FastAPI backend for Vietnamese plant recognition and Q&A using RAG (Retrieval-Augmented Generation) with OG-RAG hypergraph architecture.
|
| 4 |
-
|
| 5 |
-
## π― Features
|
| 6 |
-
|
| 7 |
-
- **Flow 1:** Image-only plant classification (Top-5 predictions)
|
| 8 |
-
- **Flow 2:** Image + Question (Plant identification β Contextual Q&A)
|
| 9 |
-
- **Flow 3:** Text-only Q&A (Pure RAG with Vietnamese embeddings)
|
| 10 |
-
|
| 11 |
-
## ποΈ Tech Stack
|
| 12 |
-
|
| 13 |
-
- **API:** FastAPI + Uvicorn
|
| 14 |
-
- **Database:** Supabase (PostgreSQL + pgvector)
|
| 15 |
-
- **Embeddings:** Vietnamese-Embedding (1024-dim)
|
| 16 |
-
- **LLM:** MegaLLM API (qwen/qwen3-next-80b-a3b-instruct)
|
| 17 |
-
- **CV Model:** Plant Classification API
|
| 18 |
-
- **Architecture:** OG-RAG Hypergraph (9,954 nodes, 1,305 plants)
|
| 19 |
-
|
| 20 |
---
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
- MegaLLM API key
|
| 29 |
-
- Plant Classification API endpoint
|
| 30 |
-
|
| 31 |
-
### 2. Installation
|
| 32 |
-
|
| 33 |
-
```bash
|
| 34 |
-
# Clone repository
|
| 35 |
-
git clone https://github.com/thuonguyenvan/Plant-Recognition-with-Q-A-System-Backend.git
|
| 36 |
-
cd Plant-Recognition-with-Q-A-System-Backend
|
| 37 |
-
|
| 38 |
-
# Create virtual environment
|
| 39 |
-
python -m venv venv
|
| 40 |
-
source venv/bin/activate # On Windows: venv\Scripts\activate
|
| 41 |
-
|
| 42 |
-
# Install dependencies
|
| 43 |
-
pip install -r requirements.txt
|
| 44 |
-
```
|
| 45 |
-
|
| 46 |
-
### 3. Environment Setup
|
| 47 |
-
|
| 48 |
-
```bash
|
| 49 |
-
# Copy environment template
|
| 50 |
-
cp .env.example .env
|
| 51 |
-
|
| 52 |
-
# Edit .env with your credentials
|
| 53 |
-
nano .env
|
| 54 |
-
```
|
| 55 |
-
|
| 56 |
-
**Required environment variables:**
|
| 57 |
-
|
| 58 |
-
```bash
|
| 59 |
-
# Supabase
|
| 60 |
-
SUPABASE_URL=https://your-project.supabase.co
|
| 61 |
-
SUPABASE_ANON_KEY=your_anon_key
|
| 62 |
-
|
| 63 |
-
# MegaLLM
|
| 64 |
-
MEGLLM_API_KEY=your_megallm_api_key
|
| 65 |
-
|
| 66 |
-
# Computer Vision API (optional - has default)
|
| 67 |
-
CV_API_URL=https://your-cv-api-endpoint
|
| 68 |
-
|
| 69 |
-
# Optional: Direct DB connection for data import scripts
|
| 70 |
-
SUPABASE_DB_URI=postgresql://postgres.[REF]:[PASSWORD]@aws-0-[REGION].pooler.supabase.com:6543/postgres
|
| 71 |
-
```
|
| 72 |
-
|
| 73 |
-
> **Note:** `EMBEDDING_MODEL_NAME` has a default value (`AITeamVN/Vietnamese_Embedding`) and doesn't need to be set unless you want to use a different model.
|
| 74 |
-
|
| 75 |
-
### 4. Database Setup
|
| 76 |
-
|
| 77 |
-
Run the SQL setup script in your Supabase SQL Editor:
|
| 78 |
-
|
| 79 |
-
```bash
|
| 80 |
-
# Copy content from set_up_supabasedb.sql
|
| 81 |
-
# Paste and run in: https://app.supabase.com/project/_/sql
|
| 82 |
-
```
|
| 83 |
-
|
| 84 |
-
### 5. Import Data (Optional)
|
| 85 |
-
|
| 86 |
-
If you have the data files:
|
| 87 |
-
|
| 88 |
-
```bash
|
| 89 |
-
# Import hypernodes with embeddings
|
| 90 |
-
python scripts/fast_import.py --embeddings plant_hypernodes_with_embeddings.json
|
| 91 |
-
```
|
| 92 |
-
|
| 93 |
-
> **Note:** Large data files are not included in this repository. Contact maintainer for access.
|
| 94 |
-
|
| 95 |
-
### 6. Run Server
|
| 96 |
-
|
| 97 |
-
```bash
|
| 98 |
-
# Development mode
|
| 99 |
-
uvicorn main:app --reload --host 0.0.0.0 --port 8000
|
| 100 |
-
|
| 101 |
-
# Or using Python
|
| 102 |
-
python main.py
|
| 103 |
-
```
|
| 104 |
-
|
| 105 |
-
Server will start at: **http://localhost:8000**
|
| 106 |
-
|
| 107 |
---
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
### Health Check
|
| 112 |
-
|
| 113 |
-
```bash
|
| 114 |
-
GET /health
|
| 115 |
-
```
|
| 116 |
-
|
| 117 |
-
### Flow 1: Image Classification
|
| 118 |
-
|
| 119 |
-
```bash
|
| 120 |
-
# Upload image file
|
| 121 |
-
POST /api/flow1/classify
|
| 122 |
-
Content-Type: multipart/form-data
|
| 123 |
-
Body: file=<image>
|
| 124 |
-
|
| 125 |
-
# Or use image URL
|
| 126 |
-
POST /api/flow1/classify-url
|
| 127 |
-
Content-Type: application/json
|
| 128 |
-
Body: {"image_url": "https://..."}
|
| 129 |
-
|
| 130 |
-
# Get plant details
|
| 131 |
-
GET /api/flow1/detail/{plant_name}
|
| 132 |
-
```
|
| 133 |
-
|
| 134 |
-
### Flow 2: Image + Question
|
| 135 |
|
| 136 |
-
|
| 137 |
-
# Upload image + question
|
| 138 |
-
POST /api/flow2/identify
|
| 139 |
-
Content-Type: multipart/form-data
|
| 140 |
-
Body: file=<image>
|
| 141 |
|
| 142 |
-
|
| 143 |
-
POST /api/flow2/ask
|
| 144 |
-
Content-Type: application/json
|
| 145 |
-
Body: {
|
| 146 |
-
"question": "CΓ’y nΓ y cΓ³ tΓ‘c dα»₯ng gΓ¬?",
|
| 147 |
-
"plant_name": "SΓ’m cau"
|
| 148 |
-
}
|
| 149 |
-
```
|
| 150 |
|
| 151 |
-
|
| 152 |
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
Body: {
|
| 157 |
-
"question": "CΓ’y nΓ o chα»―a ho?",
|
| 158 |
-
"top_k": 10
|
| 159 |
-
}
|
| 160 |
-
```
|
| 161 |
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
# Test health endpoint
|
| 168 |
-
curl http://localhost:8000/health
|
| 169 |
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
-d '{"question": "SΓ’m cau cΓ³ tΓ‘c dα»₯ng gΓ¬?"}'
|
| 174 |
-
|
| 175 |
-
# Test Flow 1 (Classification)
|
| 176 |
-
curl -X POST http://localhost:8000/api/flow1/classify \
|
| 177 |
-
-F "file=@path/to/plant_image.jpg"
|
| 178 |
-
```
|
| 179 |
-
|
| 180 |
-
---
|
| 181 |
|
| 182 |
-
##
|
| 183 |
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
βββ config.py # Configuration settings
|
| 188 |
-
βββ requirements.txt # Python dependencies
|
| 189 |
-
βββ .env.example # Environment template
|
| 190 |
-
βββ set_up_supabasedb.sql # Database setup script
|
| 191 |
-
β
|
| 192 |
-
βββ services/ # Core business logic
|
| 193 |
-
β βββ cv_api_client.py # Plant classification API client
|
| 194 |
-
β βββ embedding_service.py # Vietnamese embedding service
|
| 195 |
-
β βββ llm_client.py # Groq LLM client
|
| 196 |
-
β βββ vector_db_service.py # Supabase vector operations
|
| 197 |
-
β βββ ograg_engine.py # OG-RAG hypergraph engine
|
| 198 |
-
β βββ query_reformulator.py # Query enhancement
|
| 199 |
-
β βββ flow1_service.py # Image classification flow
|
| 200 |
-
β βββ flow2_service.py # Image + Q&A flow
|
| 201 |
-
β βββ flow3_service.py # Text Q&A flow
|
| 202 |
-
β
|
| 203 |
-
βββ utils/ # Utility modules
|
| 204 |
-
β βββ data_loader.py # JSON-LD ontology loader
|
| 205 |
-
β βββ key_normalizer.py # Attribute name mapping
|
| 206 |
-
β βββ chunker.py # Text chunking utilities
|
| 207 |
-
β
|
| 208 |
-
βββ scripts/ # Data processing scripts
|
| 209 |
-
β βββ flatten_ontology.py # Convert JSON-LD to facts
|
| 210 |
-
β βββ build_hypergraph.py # Build hypergraph structure
|
| 211 |
-
β βββ import_embeddings.py # Generate embeddings
|
| 212 |
-
β βββ fast_import.py # Import to Supabase
|
| 213 |
-
β βββ clean_duplicates.py # Remove duplicate nodes
|
| 214 |
-
β
|
| 215 |
-
βββ tests/ # Test files
|
| 216 |
-
βββ test_connection.py # Database connection tests
|
| 217 |
-
βββ test_hypergraph.py # Hypergraph tests
|
| 218 |
-
```
|
| 219 |
-
|
| 220 |
-
---
|
| 221 |
|
| 222 |
## π§ Configuration
|
| 223 |
|
| 224 |
-
|
| 225 |
|
| 226 |
-
|
| 227 |
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
```
|
| 233 |
|
| 234 |
-
###
|
| 235 |
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
LLM_TEMPERATURE = 0.7
|
| 240 |
-
LLM_MAX_TOKENS = 2000
|
| 241 |
-
```
|
| 242 |
|
| 243 |
-
|
| 244 |
|
| 245 |
-
|
|
|
|
|
|
|
|
|
|
| 246 |
|
| 247 |
-
|
| 248 |
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
id BIGSERIAL PRIMARY KEY,
|
| 252 |
-
key TEXT NOT NULL,
|
| 253 |
-
value TEXT NOT NULL,
|
| 254 |
-
key_embedding vector(1024),
|
| 255 |
-
value_embedding vector(1024),
|
| 256 |
-
plant_name TEXT NOT NULL,
|
| 257 |
-
section TEXT,
|
| 258 |
-
chunk_id INTEGER DEFAULT 0,
|
| 259 |
-
is_chunked BOOLEAN DEFAULT FALSE,
|
| 260 |
-
created_at TIMESTAMP DEFAULT NOW(),
|
| 261 |
-
updated_at TIMESTAMP DEFAULT NOW()
|
| 262 |
-
);
|
| 263 |
-
```
|
| 264 |
-
|
| 265 |
-
---
|
| 266 |
-
|
| 267 |
-
## π Troubleshooting
|
| 268 |
-
|
| 269 |
-
### Database Connection Issues
|
| 270 |
-
|
| 271 |
-
```bash
|
| 272 |
-
# Check Supabase project is not paused
|
| 273 |
-
# Verify SUPABASE_URL and SUPABASE_KEY in .env
|
| 274 |
-
# Test connection:
|
| 275 |
-
python tests/test_connection.py
|
| 276 |
-
```
|
| 277 |
-
|
| 278 |
-
### Vector Search Timeout
|
| 279 |
-
|
| 280 |
-
```bash
|
| 281 |
-
# Reduce top_k in request
|
| 282 |
-
# Increase threshold (0.5 instead of 0.4)
|
| 283 |
-
# Check Supabase free tier limits
|
| 284 |
-
```
|
| 285 |
-
|
| 286 |
-
### Import Errors
|
| 287 |
-
|
| 288 |
-
```bash
|
| 289 |
-
# Ensure python-dotenv is installed
|
| 290 |
-
pip install python-dotenv
|
| 291 |
-
|
| 292 |
-
# Check .env file exists and has correct format
|
| 293 |
-
```
|
| 294 |
-
|
| 295 |
-
---
|
| 296 |
-
|
| 297 |
-
## π Documentation
|
| 298 |
-
|
| 299 |
-
- **API Docs:** http://localhost:8000/docs (Swagger UI)
|
| 300 |
-
- **ReDoc:** http://localhost:8000/redoc
|
| 301 |
-
- **CV API Docs:** See `CV_API_DOCS.md`
|
| 302 |
-
- **Flow 2 API:** See `FLOW2_API.md`
|
| 303 |
-
- **Kaggle Embedding Guide:** See `KAGGLE_EMBEDDING_GUIDE.md`
|
| 304 |
-
|
| 305 |
-
---
|
| 306 |
-
|
| 307 |
-
## π€ Contributing
|
| 308 |
-
|
| 309 |
-
1. Fork the repository
|
| 310 |
-
2. Create feature branch (`git checkout -b feature/amazing-feature`)
|
| 311 |
-
3. Commit changes (`git commit -m 'Add amazing feature'`)
|
| 312 |
-
4. Push to branch (`git push origin feature/amazing-feature`)
|
| 313 |
-
5. Open Pull Request
|
| 314 |
-
|
| 315 |
-
---
|
| 316 |
-
|
| 317 |
-
## π License
|
| 318 |
-
|
| 319 |
-
This project is licensed under the MIT License.
|
| 320 |
-
|
| 321 |
-
---
|
| 322 |
-
|
| 323 |
-
## π₯ Authors
|
| 324 |
-
|
| 325 |
-
- **Thuong Nguyen Van** - [@thuonguyenvan](https://github.com/thuonguyenvan)
|
| 326 |
-
|
| 327 |
-
---
|
| 328 |
-
|
| 329 |
-
## π Acknowledgments
|
| 330 |
-
|
| 331 |
-
- **OG-RAG Paper:** [Ontology-Grounded RAG](https://arxiv.org/html/2412.15235v1)
|
| 332 |
-
- **Vietnamese Embedding:** AITeamVN/Vietnamese_Embedding
|
| 333 |
-
- **Supabase:** Vector database with pgvector
|
| 334 |
-
- **MegaLLM:** OpenAI-compatible LLM API
|
| 335 |
-
|
| 336 |
-
---
|
| 337 |
|
| 338 |
-
##
|
| 339 |
|
| 340 |
-
|
| 341 |
-
-
|
| 342 |
-
-
|
|
|
|
| 343 |
|
| 344 |
---
|
| 345 |
|
| 346 |
-
|
| 347 |
-
**Last Updated:** November 2025
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Plant Recognition with Q&A System Backend
|
| 3 |
+
emoji: πΏ
|
| 4 |
+
colorFrom: green
|
| 5 |
+
colorTo: blue
|
| 6 |
+
sdk: docker
|
| 7 |
+
pinned: false
|
| 8 |
+
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
---
|
| 10 |
|
| 11 |
+
# πΏ Plant Recognition with Q&A System Backend
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
Vietnamese medicinal plant recognition and Q&A system powered by RAG (Retrieval-Augmented Generation).
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
## π Features
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
This API provides 3 intelligent flows:
|
| 18 |
|
| 19 |
+
### Flow 1: Image-Only Classification
|
| 20 |
+
- Upload plant image β Get top-5 predictions with detailed information
|
| 21 |
+
- Endpoint: `POST /api/flow1/classify`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
### Flow 2: Image + Text Q&A (Two-Step)
|
| 24 |
+
- **Step 1**: Upload image β Get plant predictions
|
| 25 |
+
- Endpoint: `POST /api/flow2/identify`
|
| 26 |
+
- **Step 2**: Select plant and ask questions
|
| 27 |
+
- Endpoint: `POST /api/flow2/ask`
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
### Flow 3: Pure Text Q&A
|
| 30 |
+
- Ask questions without images using RAG
|
| 31 |
+
- Endpoint: `POST /api/flow3/ask`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
## π API Documentation
|
| 34 |
|
| 35 |
+
Visit the interactive API documentation:
|
| 36 |
+
- Swagger UI: `/docs`
|
| 37 |
+
- ReDoc: `/redoc`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
## π§ Configuration
|
| 40 |
|
| 41 |
+
This Space requires the following **Secrets** to be configured in Settings:
|
| 42 |
|
| 43 |
+
### Required Environment Variables
|
| 44 |
|
| 45 |
+
1. **SUPABASE_URL** - Your Supabase project URL
|
| 46 |
+
2. **SUPABASE_ANON_KEY** - Supabase anonymous key
|
| 47 |
+
3. **MEGLLM_API_KEY** - MegaLLM API key for LLM
|
| 48 |
+
4. **CV_API_URL** - Plant classification model API URL
|
|
|
|
| 49 |
|
| 50 |
+
### How to Configure
|
| 51 |
|
| 52 |
+
1. Go to **Settings** β **Variables and Secrets**
|
| 53 |
+
2. Add each secret with the corresponding value
|
| 54 |
+
3. Click **Apply** to restart the Space
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
## ποΈ Data
|
| 57 |
|
| 58 |
+
This deployment includes:
|
| 59 |
+
- **1,311 plant ontology files** (JSON-LD format)
|
| 60 |
+
- **Plant reference photos**
|
| 61 |
+
- **~156MB total data** bundled in Docker image
|
| 62 |
|
| 63 |
+
## π Links
|
| 64 |
|
| 65 |
+
- **GitHub**: [Plant-Recognition-Backend](https://github.com/thuonguyenvan/Plant-Recognition-with-Q-A-System-Backend)
|
| 66 |
+
- **CV Model**: [Plants Classify](https://huggingface.co/spaces/thuonguyenvan/plantsclassify)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
+
## π οΈ Tech Stack
|
| 69 |
|
| 70 |
+
- **Framework**: FastAPI + Uvicorn
|
| 71 |
+
- **LLM**: MegaLLM (Vietnamese-optimized)
|
| 72 |
+
- **Embeddings**: Vietnamese_Embedding
|
| 73 |
+
- **Vector DB**: Supabase pgvector
|
| 74 |
|
| 75 |
---
|
| 76 |
|
| 77 |
+
Built with β€οΈ for Vietnamese medicinal plant enthusiasts
|
|
|