Wav2vec2-wolof

This model is a fine-tuned version of asr-africa/wav2vec2-xls-r-wolof-mixed-75-hours on the LAFRICAMOBILE/FULL_WOLOF2 - DEFAULT dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2882
  • Wer: 0.4645
  • Cer: 0.1419

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 60.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.6813 0.2681 500 0.4663 0.5100 0.1591
0.5015 0.5362 1000 0.3608 0.4816 0.1488
0.4424 0.8043 1500 0.3339 0.4802 0.1456
0.3254 1.0724 2000 0.3147 0.4792 0.1471
0.5671 1.3405 2500 0.3150 0.4757 0.1470
0.3204 1.6086 3000 0.3072 0.4692 0.1465
0.32 1.8767 3500 0.2975 0.4685 0.1412
0.3854 2.1448 4000 0.3000 0.4664 0.1416
0.3809 2.4129 4500 0.2893 0.4607 0.1398
0.3977 2.6810 5000 0.2882 0.4644 0.1419
0.3966 2.9491 5500 0.3023 0.4657 0.1417
0.3585 3.2172 6000 0.3507 0.4764 0.1458
0.338 3.4853 6500 0.2906 0.4646 0.1412

Framework versions

  • Transformers 4.53.3
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
4
Safetensors
Model size
0.3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Leonel-Maia/Wav2vec2-wolof

Evaluation results